Toggle light / dark theme

This deadly brain disorder can develop a decade after you get the measles — and it just killed a child

A school-aged child in L.A. recently died after developing a rare neurological disease years after contracting the measles.

Authorities didn’t reveal many details about the case, except that the child was infected with measles as an infant, before they were eligible for the vaccine.

Measles is a respiratory disease that spreads easily from person to person. The first dose of the measles, mumps and rubella (MMR) vaccine is routinely recommended for kids between 12 and 15 months old. A second dose is given before kindergarten or first grade.

The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection

Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer’s disease, or the most common neurodegenerative motor disorder, Parkinson’s disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle–brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players.

Stanford Scientists Rethink How We Learn To Move in the World

Knight Initiative researchers are investigating the detailed processes behind how the brain learns to control movement. Their discoveries may eventually lead to improved therapies for Parkinson’s disease. Every motor skill you acquire, from simple actions like walking to precise tasks such as wat

‘Rhythm beats volume’: How the brain keeps the world looking familiar

The brain is famously plastic: Neurons’ ability to change their behavior in response to new stimuli is what makes learning possible. And even neurons’ response to the same stimuli changes over time—a phenomenon known as representational drift. Yet our day-to-day perception of the world is relatively stable. How so?

Resolving such puzzles matters for future brain-computer interfaces, sensory prostheses and therapies for neurological disease. On a quest for an answer, Rice University scientists have built ultraflexible probes thousands of times thinner than a and used them to track neurons in the visual cortex of mice for 15 consecutive days as the animals viewed thousands of images—from line patterns to pictures of the natural world.

The devices, called nanoelectronic threads (NETs), embed seamlessly with , allowing for high-fidelity chronic recordings of .

How you make it matters: Spintronics device performance tied to atomic interface changes

Spintronics devices will be key to realizing faster and more energy-efficient computers. To give us a better understanding of how to make them, a Kobe University team now showed how different manufacturing techniques influence the material properties of a key component.

Electronic devices could be made more efficient and faster if electrons could carry more information at once. This is the basic idea behind spintronics, where researchers try to use the electrons’ spin in addition to charge in , processing and sensor devices to significantly improve our computers.

One component for such devices is the “,” which may be used, for example, for neuron-like behavior in information processing or in a new type of fast and non-volatile memory. They consist of two ferromagnets, usually a nickel-iron alloy, sandwiching a thin insulating layer such as graphene.

Psychedelic medicine could revolutionise how we treat mental illness

Depression, anxiety, PTSD and other maladies of the mind are plaguing our societies. Our medicines are now decades old, and their effectiveness is questionable. Around half of those taking antidepressants experience no benefits. Side effects are common, and relapse rates when stopping the pills can reach 80%.

If someone told you we have a remedy with nearly no relapse, no long term side effects, and life-altering potential, wouldn’t you be curious?

Enter Dr. Ayla Selamoglu (Newnham 2016). As a Trinity postdoc endorsed by biotechnologist Prof. Christopher Lowe OBE, her research centres on psychedelic medicine and drug development.

Psychedelic medicine has the potential to revolutionise psychiatry. And the revolution is starting here.


Dr. Ayla Selamoglu is an expert on psychedelic medicine. Her work shows how nature’s most mysterious compounds provide new ways to combat mental illness.

/* */