Toggle light / dark theme

Sound localization is one of the many learning tasks accomplished by the brain based on the binaural signals of the ears. Here, Wu et al demonstrate in-situ learning of sound localization function using a memristor array, with dramatic improvements in energy efficiency.

The human brain spends 30–50% of its waking hours engaged in mind-wandering (MW), a common phenomenon in which individuals either spontaneously or deliberately shift their attention away from external tasks to task-unrelated internal thoughts. Despite the significant amount of time dedicated to MW, its underlying reasons remain unexplained. Our pre-registered study investigates the potential adaptive aspects of MW, particularly its role in predictive processes measured by statistical learning. We simultaneously assessed visuomotor task performance as well as the capability to extract probabilistic information from the environment while assessing task focus (on-task vs. MW). We found that MW was associated with enhanced extraction of hidden, but predictable patterns.

The ability to regulate one’s own food intake is essential to the survival of both humans and other animals. This innate ability ensures that the body receives the nutrients it needs to perform daily activities, without significantly exceeding calorie intake, which could lead to health problems and metabolic disorders.

Past neuroscience studies suggest that the regulation of food intake is supported by specific regions in the brain, including the hypothalamus and caudal nucleus of the solitary tract (cNTS), which is part of the brainstem. This key region in the brainstem is known to integrate originating from the gut and then transform them into adaptive feeding behaviors.

While previous research has highlighted the key role of the cNTS in food intake regulation, the unique contribution of the different neuron subtypes within this brainstem region and the mechanisms by which they regulate feeding remain poorly understood. Better understanding these neuron-specific mechanisms could help to devise more effective therapeutic interventions for obesity and eating disorders.

Past research suggests that meditation and exposure to art or nature can positively impact people’s well-being and brain health, in some cases even reducing stress and supporting the processing of emotions. Yet most past studies focused on each of these experiences individually, rather than comparing their effects on brain activity.

Researchers at University of California Los Angeles set out to examine the brain activation patterns associated with a visualization-based of connecting to the cosmic soul and compare them to those from people watching evocative digital art or nature videos.

Their findings, published in Frontiers in Human Neuroscience, suggest that these different types of transcending experiences prompt different brain activation patterns.

00:00: Outline.
00:53: P1, P2, P3
03:14: Feasibility study.
04:35: DJ Seo comments.
06:20: Academic work.
07:18: Bad reporting-Rachel Levy.
10:15: Canada trial-international expansion.
12:02: Elon talk at CNS
13:46: Please subscribe.

Jan 8, 2025: CES by Mark Penn, CEO of Stagwell:
https://twitter.com/ElonClipsX/status/1877222791713337623

Jan 7, 2025: Elon Announces More International Expansion:
https://twitter.com/NeuraPod/status/1876708688242589775

Nov 25, 2024: Neuralink’s CONVOY Study Announcement:
https://twitter.com/neuralink/status/1861107594645119006

Nov 22, 2024: Romina’s Offer:
https://twitter.com/RominaNejad/status/1859996818601652667

Nov 20, 2024: Neuralink’s Canadian Trial Announcement: