Toggle light / dark theme

Seizures come suddenly, triggered by stress, fever, flashing lights, or even just feeling tired. Some cause the body to jerk and shake while others can produce strange sensations, make one lose a sense of awareness, or faint. They can happen when the person is awake or asleep. When they pass, after a few seconds or minutes, they leave people tired, confused, and disoriented.

The brain usually maintains a certain level of inhibition that keeps neurons from firing uncontrollably. But during a seizure, one part of the brain starts firing too frantically and can’t stop, resulting in a spike of electrical activity and a seizure.

Synchron, a neurovascular bioelectronics medicine company, today announced publication of a first-in-human study demonstrating successful use of the Stentrode™ brain-computer interface (BCI), or neuroprosthesis. Specifically, the study shows the Stentrode’s ability to enable patients with severe paralysis to resume daily tasks, including texting, emailing, shopping and banking online, through direct thought, and without the need for open brain surgery. The study is the first to demonstrate that a BCI implanted via the patient’s blood vessels is able to restore the transmission of brain impulses out of the body, and did so wirelessly. The patients were able to use their impulses to control digital devices without the need for a touchscreen, mouse, keyboard or voice activation technology. This feasibility study was published in the Journal of NeuroInterventional Surgery (JNIS), the leading international peer-review journal for the clinical field of neurointerventional surgery, and official journal of the Society of NeuroInterventional Surgery (SNIS).

Fortunately, neuroscience can help — both to reassure you that you’re normal, and to provide support for the idea that there are specific habits and practices people can learn in order to improve memory when they need it most. Here are 8 of the most interesting I’ve found over the last couple of years:

Let’s start with this one, because it’s oh-so-easy. Michigan State University researchers studied whether Nile grass rats exhibited better memory when they were kept in an environment where the lighting resembled a corporate office (think dim fluorescent lighting), or where the lighting resembled a sunny day outside.

Sure enough, the study found that rats in dim lighting “lost about 30 percent of capacity in the hippocampus, a critical brain region for learning and memory, and performed poorly on a spatial task they had trained on previously.”

In a new review article published in Frontiers in Cell and Developmental Biology, researchers have suggested adding cellular enlargement to the hallmarks of aging [1].

Different cell types are known to have different shapes and sizes, which are dictated by their functions. In humans, sperm cells (male gametes) and ova (female gametes) have the smallest and largest diameters, respectively. On the other hand, some neurons are the longest cells: their axons can be over a meter long.

Nevertheless, within a specific cell type, the size variation is negligible. It has been long observed that healthy cells tend to maintain their size and that size changes are characteristic of pathological conditions. Cancer cells are often smaller than normal cells, while senescence leads to cellular enlargement [2].

Many investors are jumping to inject money into the startup.

Bill Gates and Jeff Bezos-backed foundations (Gates Frontier and Bezos Expeditions) have joined other companies in investing $75 million in Synchron, the endovascular brain-computer interface (BCI) company, according to a press release by the organization published on Thursday. This is a Series C financing round led by ARCH Venture Partners that brings the total amount raised since inception to $145 million.

Many investors on board.

Additional companies investing are Reliance Digital Health Limited, Greenoaks, Alumni Ventures, Moore Strategic Ventures, and Project X join ARCH as new additional investors.


Synchron through Business Wire.

The funding will serve to support and promote the development of Synchron’s first platform product (Synchron Switch BCI), as well as the beginning of a pivotal clinical trial.

Vitamin D plays an important role in the regulation of calcium and phosphorus absorption by the organism. It also helps keep the brain and immune system working. Researchers at the Federal University of São Carlos (UFSCar) in Brazil and University College London (UCL) in the United Kingdom have now shown that vitamin D supplementation reduces the risk of dynapenia in older people by 78%.

Dynapenia is an age-associated loss of muscle strength. It can be partially explained by muscle atrophy and is a major risk factor for physical incapacity later in life. People with dynapenia are more likely to fall, need to go to hospital, be prematurely institutionalized, and die.

An article on the study is published in the journal Calcified Tissue International and Musculoskeletal Research. The study was supported by FAPESP.

Computational modelling of the brain requires accurate representation of the tissues concerned. Mechanical testing has numerous challenges, in particular for low strain rates, like neurosurgery, where redistribution of fluid is biomechanically important. A finite-element (FE) model was generated in FEBio, incorporating a spring element/fluid–structure interaction representation of the pia–arachnoid complex (PAC). The model was loaded to represent gravity in prone and supine positions. Material parameter identification and sensitivity analysis were performed using statistical software, comparing the FE results to human in vivo measurements. Results for the brain Ogden parameters µ, α and k yielded values of 670 Pa, −19 and 148 kPa, supporting values reported in the literature. Values of the order of 1.2 MPa and 7.7 kPa were obtained for stiffness of the pia mater and out-of-plane tensile stiffness of the PAC, respectively. Positional brain shift was found to be non-rigid and largely driven by redistribution of fluid within the tissue. To the best of our knowledge, this is the first study using in vivo human data and gravitational loading in order to estimate the material properties of intracranial tissues. This model could now be applied to reduce the impact of positional brain shift in stereotactic neurosurgery.

Finite-element (FE)-based computational models of the human brain are an increasingly common research tool, with applications ranging from head impact to neurosurgery. Studies considering head impacts are generally concerned with traumatic brain injury (TBI), where a better understanding of the underlying mechanisms is essential for the development of prevention measures [1]. Within neurosurgery, efforts are primarily focused on tumour resection, where loss of cerebrospinal fluid (CSF) and tissue resection are responsible for much of the deformation [2]. Movement and deformation of the intact brain, known as brain shift, is clinically significant in stereotactic neurosurgical procedures such as deep brain stimulation where electrode placement accuracy correlates with patient outcomes [3].