Breakthrough hints other cells in central nervous system, such as the brain, could be restored.
Category: neuroscience – Page 511
Stem cell therapies are showing huge promise in a lot of areas, but one application that has scientists particularly excited is in next-generation treatments for Parkinson’s disease. A team experimenting in this area has demonstrated how implanting carefully cultivated stem cells into rats can bring about remarkable recovery from motor symptoms typical of the disease, and are now setting their sights on upcoming human trials.
Parkinson’s disease is considered a prime target for innovative stem ell therapies because the condition can be traced back to the deterioration of a particular type of cell in a particular region of the brain. The neurons in the substantia nigra, a structure in the midbrain, are responsible for producing dopamine, which helps control movement, among other things.
The loss of these neurons is what contributes to motor symptoms in Parkinson’s patients, so using stem cell therapies to replace them is a very appealing idea, and one that has started to migrate from animal testing to humans. In a world-first trial undertaken in Japan in 2018, Parkinson’s patients had stem-cell-derived precursor cells implanted into their brains where they matured into the dopamine-producing neurons, with a number of subjects reported to be doing well.
A receptor that was first identified as necessary for insulin action, that also is located on the neural stem cells found deep in the brains of mice, is pivotal for brain stem cell longevity, according to a Rutgers study, a finding that has important implications for brain health and future therapies for brain disorders.
The study 0, appearing in the journal Stem Cell Reports, pinpoints a specific protein known as the insulin receptor (INSR), which is abundant on the neural stem cells that reside in the brain’s subventricular zone. During development, neural stem cells give rise to the entire nervous system, and they persist into adulthood. Over the lifespan these neural stem cells produce new neurons and non-neuronal cells that maintain the infrastructure and functioning of the brain.
Separately, the scientists made another finding when examining brain tumors: INSR plays a crucial role in sustaining and maintaining a population of specialized brain cancer cells known as glioblastoma (GBM) stem cells. When they inactivated the INSR in the GBM stem cells they inhibited the growth of those primitive tumor forming cells.
Sudden infant death syndrome (SIDS) accounts for about 37% of sudden unexpected infant deaths a year in the U.S., and the cause of SIDS has remained largely unknown. On Saturday, researchers from The Children’s Hospital Westmead in Sydney released a study that confirmed not only how these infants die, but why.
SIDS refers to the unexplained deaths of infants under a year old, and it usually occurs while the child is sleeping. According to Mayo Clinic, many in the medical community suspected this phenomenon could be caused by a defect in the part of the brain that controls arousal from sleep and breathing. The theory was that if the infant stopped breathing during sleep, the defect would keep the child from startling or waking up.
The Sydney researchers were able to confirm this theory by analyzing dried blood samples taken from newborns who died from SIDS and other unknown causes. Each SIDS sample was then compared with blood taken from healthy babies. They found the activity of the enzyme butyrylcholinesterase (BChE) was significantly lower in babies who died of SIDS compared to living infants and other non-SIDS infant deaths. BChE plays a major role in the brain’s arousal pathway, explaining why SIDS typically occurs during sleep.
Results from the first phase 3 trial of using MDMA for PTSD along with talk therapy found the drug to be effective.
BrainChart is a standardized open-source database of MRI brain scans across 100 years of the human lifespan.
Dr. Thomas Lehner was tired of his research repeatedly hitting a wall.
A scientist at the National Institute of Mental Health, Lehner studies the genetic underpinnings of neuropsychiatric disorders. Teasing out associated genes turned out to be relatively simple. Schizophrenia, for example, is linked to small variations in some 360 genes.
The problem is identifying the ones that really matter—culprit gene variants that can be turned into predictive tests, similar to the BRCA gene for breast cancer.
Circa 2017
Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.
Keywords: CRISPR/Cas9; gene editing; lncRNAs; miRNAs; non-coding RNAs; schizophrenia.