Toggle light / dark theme

Induced pluripotent stem cells offer great therapeutic potential and are a valuable tool for understanding how different diseases develop. New research shows that such stem cell lines should be regularly screened for genetic mutations to ensure the accuracy of the disease models.

In the past 10 years, scientists have learned to create induced (iPSC) from ordinary cells by genetic reprogramming. These cells are widely used to study diseases, as they can be differentiated to almost any cell type of the body, and they can be generated from any individual. However, a key remaining methodological challenge is that the differentiation process is subject to major technical variation for mostly unknown reasons.

HiLIFE Tenure Track Professor Helena Kilpinen and her group at the University of Helsinki use for studying the biological mechanisms of neurodevelopmental and other brain-related diseases.

Could an injection of lab-cultured brain cells, created from a person’s own cells, reverse symptoms of Parkinson’s disease? That’s an idea that Aspen Neuroscience Inc., a startup based in San Diego, plans to test in human trials later this year.

In patients with Parkinson’s, neurons die and lose the ability to make the chemical dopamine, leading to erratic, uncontrollable movements. Aspen Neuroscience will test if the newly injected cells can mature into dopamine producers, stopping the debilitating symptoms of this incurable disease, says Damien McDevitt, the company’s chief executive officer. Tests in animals have shown promise, the company says.

Michael Levin is a biologist at Tufts University working on novel ways to understand and control complex pattern formation in biological systems.

Michael Levin links.
Michael’s Twitter: https://twitter.com/drmichaellevin.
Michael’s Website: https://drmichaellevin.org.

PODCAST INFO:
The Learning With Lowell show is a series for the everyday mammal. In this show we’ll learn about leadership, science, and people building their change into the world. The goal is to dig deeply into people who most of us wouldn’t normally ever get to hear. The Host of the show – Lowell Thompson-is a lifelong autodidact, serial problem solver, and founder of startups.

LINKS

Summary: Researchers have developed a new 3D, high-resolution model of the CA1 area of the human hippocampus.

Source: Human Brain Project.

A new high-resolution model of the CA1 region of the human hippocampus has been developed by the Institute of Biophysics of the Italian National Research Council (CNR-IBF) and University of Modena e Reggio Emilia (UNIMORE), part of the Human Brain Project.

Hailey-Hailey disease is a rare, inherited condition characterized by patches of blisters appearing mainly in the skin folds of the arm pits, groin and under the breasts. It is caused by a mutation in the gene that codes for a specific protein involved in the transportation of calcium and manganese ions from the cell cytoplasm and into a sac-like organelle called the Golgi apparatus.

Scientists at Tohoku University, together with colleagues in Japan, have uncovered some aspects of this ’s structure that could help researchers understand how it works. The findings, published in the journal Science Advances, help build the foundations for research into finding treatments for Hailey-Hailey disease and other neurodegenerative conditions.

The protein the team studied is called secretory pathway Ca2+/Mn2+-ATPase, or SPCA for short. It is located in the Golgi apparatus, a cellular sac-like structure that plays a crucial role in protein quality control before they are released into cells. The Golgi apparatus also acts like a sort of calcium ion storage container. Calcium ions are vital for cell signaling processes and are important for proteins to function properly, so maintaining the right calcium ion balance inside cells is necessary for their day-to-day activities.

Our brains aren’t limited to producing just one type of brain wave at a time, but usually, one type is dominant, and the type it is can often be linked to your level of alertness: delta waves may dominate when you sleep, while gamma waves might dominate when you concentrate intensely.

The idea: Researchers have previously observed that people with Alzheimer’s — a devastating neurological disease affecting more than 6 million people in the US alone — may have weaker and less in-sync gamma waves than people who don’t have the disease.

In a series of past studies, MIT researchers demonstrated a deceptively simple way to increase the power and synchronization of these waves in mouse models of Alzheimer’s: expose the animals to lights flickering and/or sounds clicking at a frequency of 40 Hz.

Organoids are an incredible tool for research into the brain. Cerebral organoids are created by growing human stem cells in a bioreactor. They might be the key to unlocking the answers to many of our questions about the brain. We explain how they’re made and some of the discoveries they’ve helped with so far!

✍ Script by Duranka Perera (https://www.durankaperera.com/)
✍ Thumb by “Broken” Bran — https://twitter.com/BranGSmith.

Support us on Patreon: https://www.patreon.com/Brainbook_
Thank you to our supporters:

Morag Forbes.
Patrick Kohl.
Ronald Coleman Dees.
Alex Rofini.
Helen Whitley.

Discover more on our website.
https://www.brainbookcharity.org.

Follow us on:
Twitter: https://www.twitter.com/realbrainbook.
Instagram: https://www.instagram.com/brainbook_
Facebook: https://www.facebook.com/realbrainbook

Scientists have found evidence using neuroimaging that the native language people speak may affect the way that their brains are wired.

Researchers from Max Planck Institute for Human Cognitive and Brain Sciences in Leipzig analyzed and compared the brain scans of native Arabic and German speakers. The languages were selected for the reason that they are significantly different.

Their results indicate the native language of an individual can influence the connectivity between areas of their brains.