Toggle light / dark theme

Consciousness is famously unobservable. Therefore, to test for consciousness, we must study its absence rather than its presence. Stuart Hameroff here argues that by studying anesthesia we are able to understand what goes away in the brain when the light of consciousness is switched off. Hameroff finds the answer in quantum processes in the brain – recent studies suggest he is onto something.

This article is presented in association with Closer To Truth, a partner for HowTheLightGetsIn Festival 2024. The festival will feature the debate ‘The Consciousness Test’, featuring Sabine Hossenfelder, Yoshua Bengio, Nick Lane and Hilary Lawson.

Model grounded in biology reveals the tissue structures linked to the disorder. A researcher’s mathematical modeling approach for brain imaging analysis reveals links between genes, brain structure and autism.

A multi-university research team co-led by University of Virginia engineering professor Gustavo K. Rohde has developed a system that can spot genetic markers of autism in brain images with 89 to 95% accuracy.

Their findings suggest doctors may one day see, classify and treat autism and related neurological conditions with this method, without having to rely on, or wait for, behavioral cues. And that means this truly personalized medicine could result in earlier interventions.

The group of Jürgen Knoblich at the Institute of Molecular Biotechnology (IMBA) of the Austrian Academy of Sciences, has developed a new method that allows scientists to cultivate brain organoids with distinct cortical areas and front-to-back patterning.

Together with collaborators at the Human Technopole and the University of Milan-Bicocca, they report a method that gives scientists a deeper look into human-specific brain development and disorders. The study was published in Nature Methods on September 18.

Brain organoids are extensively used to study development. Derived from , the 3D models allow scientists to study unique properties of the human brain. Researchers use cortical organoids to answer fundamental questions such as how the human brain can grow to its large size or how the human brain’s long-range connections form.

Using a 3D printer that works with molten glass, researchers forged LEGO-like glass bricks with a strength comparable to concrete. The bricks could have a role in circular construction in which materials are used over and over again.

“Glass as a structural material kind of breaks people’s brains a little bit,” says Michael Stern, a former MIT graduate student and researcher in both MIT’s Media Lab and Lincoln Laboratory. “We’re showing this is an opportunity to push the limits of what’s been done in architecture.”

Stern is also the founder of MIT spinoff, Evenline. That company developed a special 3D printer that can execute additive manufacturing using molten glass as its feedstock, which you can see in operation in the following video.

While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.

Led by Dr…


When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?

When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building blocks that make up the human body?

The ability to recharge cells diminishes as humans age or face diseases. Mitochondria, often called the powerhouse of the cell, are central to energy production. When mitochondrial function declines, it leads to fatigue, tissue degeneration, and accelerated aging. Activities that once required minimal recovery now take far longer, highlighting the role that these organelles play in maintaining vitality and overall health.

While current treatments for ailments related to aging and diseases like type 2 diabetes, Alzheimer’s, and Parkinson’s focus on managing symptoms, Texas A&M researchers have taken a new approach to fight the battle at the source: recharging mitochondrial power through nanotechnology.