Toggle light / dark theme

A UCSF study reveals that higher inflammation levels in young adults are associated with poorer cognitive performance in midlife, underscoring the importance of lifestyle choices in reducing inflammation and preventing cognitive decline.

Higher levels of inflammation in young adults, associated with factors like obesity, physical inactivity, chronic illness, stress, and smoking, are linked to decreased cognitive function in midlife, according to a new study from UC San Francisco.

Researchers previously linked higher inflammation in older adults to dementia, but this is one of the first studies to connect inflammation in early adulthood with lower cognitive abilities in midlife.

Researchers have discovered a new pathway used by cancer cells to infiltrate the brain and developed a promising therapy that targets this pathway with CAR T cells.

Their study showed significant preclinical success in increasing survival and eradicating tumors in animal models of glioblastoma and other brain cancers.

A team of Canadian and American research groups led by the Singh Lab at McMaster University have discovered a new pathway that is used by cancer cells to infiltrate the brain. The research also reveals a new therapy that shows promise in blocking and killing these tumors.

When two people interact, their brain activity becomes synchronized, but it was unclear until now to what extent this “brain-to-brain coupling” is due to linguistic information or other factors, such as body language or tone of voice.

Researchers report August 2 in the journal Neuron that brain-to-brain coupling during can be modeled by considering the words used during that conversation, and the context in which they are used.

“We can see linguistic content emerge word-by-word in the speaker’s brain before they actually articulate what they’re trying to say, and the same linguistic content rapidly reemerges in the listener’s brain after they hear it,” says first author and neuroscientist Zaid Zada of Princeton University.

When we form a new memory, the brain undergoes physical and functional changes known collectively as a “memory trace.” A memory trace represents the specific patterns of activity and structural modifications of neurons that occur when a memory is formed and later recalled.

But how does the brain “decide” which neurons will be involved in a ? Studies have suggested that the inherent excitability of neurons plays a role, but the currently accepted view of learning has neglected to look inside the command center of the neuron itself, its nucleus. In the nucleus, there seems to be another dimension altogether that has gone unexplored: epigenetics.

Inside every cell of a given living organism, the genetic material encoded by the DNA is the same, yet the various cell types that make up the body, like , , or nerve cells each express a different set of genes. Epigenetics is the mechanism of how cells control such gene activity without changing the DNA sequence.

I like what Fahy says here most.


RAADfest is the largest and most immersive event in the world focused on super-longevity for a general audience. Bringing together cutting-edge science, inspiration, entertainment and fun, RAADfest is more than just a conference – it’s a celebration of life. From brain longevity and sexual health, to senolytics, personalized medicine and helping your pets live longer too, RAADfest provides the information and inspiration to enable people to take charge of their longevity.

For more info, visit: https://www.raadfest.com/

Produced by the Coalition for Radical Life Extension, RAADfest also includes RAADcity, the international product expo. RAADcity features leading brands sharing demos and deals on their longevity products and services with the people who want and need them the most.

When: Sept 5th to 8th, 2024

For generations, researchers have been pondering the question of how and where consciousness is formed in the brain. Professor Ekrem Dere from Ruhr University Bochum, Germany, proposes a new approach to researching conscious cognitive information processing. He advocates defining phases of conscious cognitive processes on the basis of behavioral observations and learning curves.

“Learning is often not a gradual process, but takes place in leaps and bounds; you could say that humans and experience sudden epiphanies every now and then,” he says. “It’s likely that these experiences are preceded by conscious processes.”

Dere outlines his new approach, which might apply to both humans and animals, in an article published in the journal Frontiers in Behavioral Neuroscience.

A mind-bending parasite may one day deliver drugs to the brain.

Toxoplasma gondii is a single-celled parasite that famously makes mice lose their fear of cats, but also can cause deadly foodborne illnesses (SN: 1/14/20).


Those with weakened immune systems have a higher risk of developing severe disease when exposed to T. gondii. Pregnant people run the risk of preterm birth and pregnancy loss. In addition, the parasite can cause a variety of problems for the baby including blindness, hearing loss, epilepsy and jaundice. More than 200,000 cases of toxoplasmosis are diagnosed each year in the United States, with about 5,000 requiring hospitalization. An estimated 750 people each year die from the disease.

Koshy’s own previous research indicates that brain cells the parasite injects a payload into eventually die.

If researchers want to use the parasite for drug delivery, they will need to learn how it causes disease and disable those mechanisms without harming T. gondii’s ability to quietly infect the brain.