Toggle light / dark theme

A new study published in the Journal of Neuroscience indicates that the sense of smell is significantly influenced by cues from other senses, whereas the senses of sight and hearing are much less affected.

A popular theory of the brain holds that its main function is to predict what will happen next, so it reacts mostly to unexpected events. Most research on this topic, called predictive coding, has only focused on what we see, but no one knows if the different senses, such as smell, work in the same way.

To figure out more about how smell relates to how we handle different sensory impressions, the researchers conducted a study with three experiments, two behavioral experiments, and one experiment using the brain imaging method fMRI at Stockholm University Brain Imaging Centre (SUBIC).

Cannabinol (CBN) is a chemical found in cannabis that exhibits milder psychoactive properties than most cannabis chemicals, though research pertaining to its medical applications remains limited. Now, a team of researchers led by The Salk Institute for Biological Studies have published a study in Redox Biology that addresses the potential for CBN to serve as a method for neurological disorders, including traumatic brain injuries, Parkinson’s disease, and Alzheimer’s disease.

For the study, the researchers produced four CBN analogs that exhibited greater neuroprotective capabilities compared to the traditional CBN molecule and tested them on Drosophila fruit flies. In the end, the researchers discovered these CBN analogs possessed neuroprotective capabilities that surpassed traditional CBN molecules, including the treating of traumatic brain injuries. While not tested during this study, these CBN analogs could be used to also treat a myriad of neurological disorders, including Parkinson’s disease, Alzheimer’s disease, and Huntington’s disease.

“Our findings help demonstrate the therapeutic potential of CBN, as well as the scientific opportunity we have to replicate and refine its drug-like properties,” said Dr. Pamela Maher, who is a research professor in the Cellular Neurobiology Laboratory at Salk and a co-author on the study. “Could we one day give this CBN analog to football players the day before a big game, or to car accident survivors as they arrive in the hospital? We’re excited to see how effective these compounds might be in protecting the brain from further damage.”

Mount Sinai researchers, in collaboration with scientists at The Rockefeller University, have uncovered a mechanism in the brain that allows cocaine and morphine to take over natural reward processing systems. Published online in Science on April 18, these findings shed new light on the neural underpinnings of drug addiction and could offer new mechanistic insights to inform basic research, clinical practice, and potential therapeutic solutions.

Although schizophrenia can be a very complex illness some new studies show that some major genetic factors could be the cause and then cured much easier through gene therapy.


Summary: Researchers leveraged cutting-edge technology to gain insights into schizophrenia’s neurodevelopmental origins. The researchers grew brain organoids from patients’ skin cells, finding persistent axonal disruptions in those with schizophrenia.

In another study, researchers zeroed in on a schizophrenia risk gene, CYFIP1, revealing its potential role in brain immune cells called microglia and their influence on synaptic pruning – a crucial process for brain health.

The extended mind — For decades, philosophers have debated the borders of personhood: where does our mind end, and the external world begin? On a simple level, you might assume that our minds rest within our brains and bodies. However, some philosophers have proposed that it’s more complicated than that.


When we merge mind and machine, the traditional borders of the self dissipate, says philosopher Dvija Mehta.

Summary: Researchers uncovered how certain brain cells enhance our ability to maintain and focus on short-term memories. Their study highlights a new type of neuron, dubbed PAC neurons, which coordinate the activity of memory-specific neurons without storing any information themselves.

These findings were derived from the brain activity recordings of epilepsy patients during memory tasks, providing novel insights into how working memory functions. Understanding these mechanisms may lead to improved treatments for disorders like Alzheimer’s and ADHD, where such cognitive functions are impaired.

I found this on NewsBreak.


According to reports, Japanese scientists have devised a technique for connecting lab-grown brain-mimicking tissue„ like how circuits in our brain work.

Researchers at the University of Tokyo released a study in Nature Communications journal that looked into making a seemingly impossible idea a reality.

The scientists discovered a new approach to establishing physiological connections between lab-grown neuronal organoids. These organoids are experimental model tissues created by growing human stem cells into 3D-developed brain-like structures.