One of the oldest, scarcest elements in the universe has given us treatments for mental illness, ovenproof casserole dishes and electric cars. But how much do we really know about lithium?
One of the oldest, scarcest elements in the universe has given us treatments for mental illness, ovenproof casserole dishes and electric cars. But how much do we really know about lithium?
This research uncovers diverse neural roles in processing words and complex sentences.
MIT neuroscientists have identified several brain regions responsible for processing language using functional magnetic resonance imaging (fMRI).
However, discovering the specific functions of neurons in those regions has proven difficult because fMRI, which measures changes in blood flow, doesn’t have a high resolution to reveal what small populations of neurons are doing.
Now, using a more precise technique that involves recording electrical activity directly from the brain, MIT neuroscientists have identified different clusters of neurons that appear to process different amounts of linguistic context.
The brain-machine interface race is on. While Elon Musk’s Neuralink has garnered most of the headlines in this field, a new small and thin chip out of Switzerland makes it look downright clunky by comparison. It also works impressively well.
The chip has been developed by researchers at the Ecole Polytechnique Federale de Lausanne (EPFL) and represents a leap forward in the sizzling space of brain-machine-interfaces (BMIs) – devices that are able to read activity in the brain and translate it into real-world output such as text on a screen. That’s because this particular device – known as a miniaturized brain-machine interface (MiBMI) – is extremely small, consisting of two thin chips measuring just 8 mm2 total. By comparison, Elon Musk’s Neuralink device clocks in at comparatively gargantuan size of about 23 × 8 mm (about 0.3 x .9 in).
Additionally, the EPFL chipset uses very little power, is reported to be minimally invasive, and consists of a fully integrated system that processes data in real time. That’s different from Neuralink, which requires the insertion of 64 electrodes into the brain and carries out its processing via an app located on a device outside of the brain.
The brain undergoes dynamic functional changes with age1,2,3.
Analyses of neuroimaging datasets from 5,306 participants across 15 countries found generally larger brain-age gaps in Latin American compared with non-Latin American populations, which were influenced by disparities in socioeconomic and health-related factors.
Enjoy the videos and music you love, upload original content, and share it all with friends, family, and the world on YouTube.
A new Nature Human Behaviour study, jointly led by Dr. Margherita Malanchini at Queen Mary University of London and Dr. Andrea Allegrini at University College London, has revealed that non-cognitive skills, such as motivation and self-regulation, are as important as intelligence in determining academic success. These skills become increasingly influential throughout a child’s education, with genetic factors playing a significant role.
The research, conducted in collaboration with an international team of experts, suggests that fostering non-cognitive skills alongside cognitive abilities could significantly improve educational outcomes.
“Our research challenges the long-held assumption that intelligence is the primary driver of academic achievement,” says Dr. Malanchini, Senior Lecturer in Psychology at Queen Mary University of London.
Substances like ayahuasca and psilocybin can induce a sense of unity with the world—and even allow some users to “see God.”
Brain-machine interfaces (BMIs) have emerged as a promising solution for restoring communication and control to individuals with severe motor impairments. Traditionally, these systems have been bulky, power-intensive, and limited in their practical applications. Researchers at EPFL have developed the first high-performance, Miniaturized Brain-Machine Interface (MiBMI), offering an extremely small, low-power, highly accurate, and versatile solution.
Published in the latest issue of the IEEE Journal of Solid-State Circuits (“MiBMI: A 192/512-Channel 2.46mm 2 Miniaturized Brain-Machine Interface Chipset Enabling 31-Class Brain-to-Text Conversion Through Distinctive Neural Codes”) and presented at the International Solid-State Circuits Conference, the MiBMI not only enhances the efficiency and scalability of brain-machine interfaces but also paves the way for practical, fully implantable devices. This technology holds the potential to significantly improve the quality of life for patients with conditions such as amyotrophic lateral sclerosis (ALS) and spinal cord injuries.
An image of the chip. (Image: EPFL)
Sensors that can be easily and safely introduced in the brain could have important medical applications and could also contribute to the development of brain-interfacing devices. While significant progress has been made toward the development of these sensors, most existing devices can only be deployed via invasive surgical procedures that can have numerous complications.
Researchers at Seoul National University and other institutes in South Korea recently created a new biodegradable and self-deployable tent electrode that could be far easier to insert onto the surface of the human brain. Their proposed electrode design, outlined in Nature Electronics, could naturally degrade inside the human body without leaving any residues, which means that once it is inserted in the body it does not need to be surgically removed.
“Our recent paper was born out of a growing awareness of the clinical challenges linked to the implantation of electrodes via invasive brain surgery,” Seung-Kyun Kang, corresponding author of the paper, told Medical Xpress.
Noninvasive braincomputer interfaces could vastly improve brain computer control.
Over the past two decades, the international biomedical research community has demonstrated increasingly sophisticated ways to allow a person’s brain to communicate with a device, allowing breakthroughs aimed at improving quality of life, such as access to computers and the internet, and more recently control of a prosthetic limb. DARPA has been at the forefront of this research.
The state of the art in brain-system communications has employed invasive techniques that allow precise, high-quality connections to specific neurons or groups of neurons. These techniques have helped patients with brain injury and other illnesses. However, these techniques are not appropriate for able-bodied people. DARPA now seeks to achieve high levels of brain-system communications without surgery, in its new program, Next-Generation Nonsurgical Neurotechnology (N3).
“DARPA created N3 to pursue a path to a safe, portable neural interface system capable of reading from and writing to multiple points in the brain at once,” said Dr. Al Emondi, program manager in DARPA’s Biological Technologies Office (BTO). “High-resolution, nonsurgical neurotechnology has been elusive, but thanks to recent advances in biomedical engineering, neuroscience, synthetic biology, and nanotechnology, we now believe the goal is attainable.”