Menu

Blog

Archive for the ‘nanotechnology’ category: Page 8

Feb 5, 2020

Religion and the Posthuman Discourse

Posted by in categories: cyborgs, nanotechnology, transhumanism

The proliferation of transhumanist thought beyond science fiction and into the public space seems, at first, a minor ideological and physical threat. Numerous concerns about the implications of transhumanism have been raised, but few regarding religious implications. Cultural anthropologist Chris Toumey notes in his article in Nature Nanotechnology the small body of literature grounded explicitly in Christian values, remarking “I would like to see religious thought on nanotechnology develop well beyond a reaction to the more sensationalist parts of the transhumanist vision.” [1] Though the quote specifies nanotechnology, it applies more broadly to non-secular works on the problem(s) with transhumanism. To find literature from Muslims, then, containing an approach to transhumanism guided by Islamic principles is a laborious endeavor. This is not to fault Muslims, but to draw observant, critical eyes to the transhumanist movement.

The existing literature must be studied in order to understand the scope of possible reconciliation/conflict as Muslims formulate their own methods of evaluation. In her book, Cyborg Selves: A Theological Anthropology of the Posthuman, Jeanine Thweatt-Bates, Assistant Professor of Theology at New Brunswick Theological Seminary, outlines her approach: one that is, at once, an overview of two approaches to the ‘posthuman,’ and an analysis of possible reconciliatory discourse with a Christian theological locus. To be clear, it’s not a book on the Christian perspective of the posthuman, but a Christian’s perspective.

The Cyborg

Feb 4, 2020

Lasers etch a ‘perfect’ solar energy absorber

Posted by in categories: nanotechnology, physics, solar power, sustainability

The University of Rochester research lab that recently used lasers to create unsinkable metallic structures has now demonstrated how the same technology could be used to create highly efficient solar power generators.

In a paper in Light: Science & Applications, the lab of Chunlei Guo, professor of optics also affiliated with Physics and the Material Sciences Program, describes using powerful femto-second pulses to etch with nanoscale structures that selectively absorb light only at the solar wavelengths, but not elsewhere.

Continue reading “Lasers etch a ‘perfect’ solar energy absorber” »

Feb 3, 2020

Scientists cooled a nanoparticle to the quantum limit

Posted by in categories: nanotechnology, particle physics, quantum physics

A tiny nanoparticle has been chilled to the max.

Physicists cooled a nanoparticle to the lowest temperature allowed by quantum mechanics. The particle’s motion reached what’s known as the ground state, or lowest possible energy level.

In a typical material, the amount that its atoms jostle around indicates its temperature. But in the case of the nanoparticle, scientists can define an effective temperature based on the motion of the entire nanoparticle, which is made up of about 100 million atoms. That temperature reached twelve-millionths of a kelvin, scientists report January 30 in Science.

Continue reading “Scientists cooled a nanoparticle to the quantum limit” »

Feb 3, 2020

Scientists have built the world’s first living, self-healing robots

Posted by in categories: biotech/medical, food, life extension, nanotechnology, robotics/AI

Do you think Xenobots is the early stage of nanobots, which could repair our body to achieve longevity escape velocity?


Scientists have created the world’s first living, self-healing robots using stem cells from frogs.

Continue reading “Scientists have built the world’s first living, self-healing robots” »

Feb 1, 2020

Trojan Horse Nanoparticle Eats Up Plaque to Clear Arteries

Posted by in categories: biotech/medical, engineering, food, nanotechnology

A hungry nanoparticle that enters your body and eats away at your insides sounds like a nightmare straight out of a Michael Crichton novel. In fact, it could be a future defense against heart attacks, strokes, and potentially other fatal diseases — as strange as that might initially sound.

Developed by scientists at Michigan State and Stanford universities, the innovative new “Trojan Horse” nanoparticle works by munching away portions of the plaques responsible for heart attacks. In a proof-of-concept demonstration, the researchers recently showed that their specially developed nanoparticle is able to accurately home in on atherosclerotic plaque, which is responsible for atherosclerosis, one of the leading causes of death in the United States.

“What the nanotherapy does is it enters inflammatory monocytes [a type of white blood cell] in the blood, and carries them into the plaque — hence the ‘Trojan Horse’ label — where they become macrophages, and stimulatesthose and other macrophages in plaque to devour cellular debris,” Bryan Smith, associate professor of biomedical engineering at MSU, told Digital Trends. “This ‘taking out the trash’ attribute stabilizes the plaque with minimal side effects.”

Jan 30, 2020

A Nanoparticle Trojan Horse Approach to Atherosclerosis

Posted by in categories: biotech/medical, nanotechnology

Researchers from Stanford University and Michigan State University have teamed up to create a nanoparticle that can eat away at the arterial plaques that lead to strokes and heart attacks in a mouse model of atherosclerosis.

The team has created a nanoparticle that acts like a Trojan horse, targeting atherosclerotic plaque to reduce its amount and prevent it from getting out of control. A considerable amount of plaque material consists of dead and dying macrophages, a type of immune cell, which have become trapped and overwhelmed while trying to remove debris and fatty deposits. As these cells die, they attract more macrophages which arrive to try to clear up the waste; they too become trapped, and this is the foundation of atherosclerotic plaque.

The new study demonstrates how the nanoparticle is able to locate the plaque while showing high selectivity for macrophages [1]. Once it has located its target, the nanoparticle enters the macrophages within the plaque and delivers a drug payload to the cells, encouraging the macrophages to engulf and consume cellular debris. Essentially, this means that the macrophages eat the dead and dying cells within the plaque and thus reduce its overall size.

Jan 29, 2020

Portable Biosensor Uses Light at Nanoscale to Detect Sepsis in Minutes

Posted by in categories: biotech/medical, nanotechnology

LAUSANNE, Switzerland, Jan. 28, 2020 — Time is critical when diagnosing sepsis, but the tests currently used to identify this disease can take up to 72 hours. Researchers at the Laboratory of Bionanophotonic Systems (BIOS) at École Polytechnique Fédérale de Lausanne (EPFL) have developed an optical biosensor that reduces sepsis diagnosis time from several days to a few minutes. The portable biosensor is based on nanoparticle-enhanced digital plasmonic imaging.

Jan 29, 2020

New Tech Will Disinfect Everything and Help Stop Infectious Diseases

Posted by in categories: biotech/medical, food, health, nanotechnology, sustainability

Nanosafety researchers at the Harvard T.H. Chan School of Public Health have developed a new intervention to fight infectious disease by more effectively disinfecting the air around us, our food, our hands, and whatever else harbors the microbes that make us sick.

They used a nano-enabled platform developed at the center to create and deliver tiny, aerosolized water nonodroplets containing non-toxic, nature-inspired disinfectants wherever desired.

ACS Sustainable Chem. Eng – Inactivation of Hand Hygiene-Related Pathogens Using Engineered Water Nanostructures.

Continue reading “New Tech Will Disinfect Everything and Help Stop Infectious Diseases” »

Jan 29, 2020

Here’s how artificial intelligence could cure disease in the future

Posted by in categories: bioengineering, biotech/medical, nanotechnology, robotics/AI

Circa 2016 could cure viruses in no time.


When you get right down to it, developing vaccines is about data and luck. Scientists start with a set of variables—what drugs a virus responds to, how effectively, and for whom—and then it’s a whole lot of trial and error until they stumble upon a cure.

One of the most exciting possibilities in medical research right now is how technology like machine learning could help researchers rapidly process those enormous sets of data, more quickly leading to cures. This is already starting to happen: In a study published Wednesday in the journal Macromolecules, researchers from IBM and Singapore’s Institute of Bioengineering and Nanotechnology reveal a breakthrough that could help prevent deadly virus infections. With the help of IBM super computer Watson, they hope their finding will soon make its way into vaccines.

Continue reading “Here’s how artificial intelligence could cure disease in the future” »

Jan 28, 2020

Nanoparticle chomps away plaques that cause heart attacks

Posted by in categories: biotech/medical, engineering, habitats, nanotechnology

Michigan State University and Stanford University scientists have invented a nanoparticle that eats away—from the inside out—portions of plaques that cause heart attacks.

Bryan Smith, associate professor of biomedical engineering at MSU, and a team of scientists created a “Trojan Horse” nanoparticle that can be directed to eat debris, reducing and stabilizing plaque. The discovery could be a potential treatment for atherosclerosis, a leading cause of death in the United States.

The results, published in the current issue of Nature Nanotechnology, showcases the nanoparticle that homes in on due to its high selectivity to a particular immune cell type—monocytes and macrophages. Once inside the macrophages in those plaques, it delivers a drug agent that stimulates the cell to engulf and eat cellular debris. Basically, it removes the diseased/dead in the plaque core. By reinvigorating the macrophages, size is reduced and stabilized.

Page 8 of 115First56789101112Last