Toggle light / dark theme

A method for imaging spin waves in magnetic materials uses flash-like intensity variations in a laser beam to capture the wave motion at specific moments in time.

The magnetic moments, or spins, in certain materials can twirl in a coordinated wave pattern that might one day be used to transmit information in so-called spintronic devices. Researchers have developed a new way to image these spin waves using an infrared laser that essentially flashes on and off at a frequency that matches that of the spin waves [1]. Unlike other spin-wave probes, this strobe method can directly capture phase information that is relevant to certain applications, such as hybrid devices that combine spin waves with other types of waves.

A spin wave can be triggered in a magnetic material when some perturbation causes a spin to oscillate, which can then generate a wave of oscillations that ripple through neighboring spins. Spin waves have several properties that make them good candidates for information carriers. For one, they have relatively small wavelengths—a few hundred nanometers at a frequency of 1 GHz, whereas a 1-GHz photon has a wavelength of about 30 cm. This compactness could conceivably allow researchers to build spintronic components, such as waveguides and logic gates, at the nanoscale. Another advantage of these waves is that the spins remain in place, and only their orientation changes. So the heat losses that affect the moving charges in traditional electronics don’t exist.

Penn Engineers have modified lipid nanoparticles (LNPs)—the revolutionary technology behind the COVID-19 mRNA vaccines—to not only cross the blood-brain barrier (BBB) but also to target specific types of cells, including neurons. This breakthrough marks a significant step toward potential next-generation treatments for neurological diseases like Alzheimer’s and Parkinson’s.

In a new paper in Nano Letters, the researchers demonstrate how —short strings of —can serve as precise targeting molecules, enabling LNPs to deliver mRNA specifically to the that line the blood vessels of the brain, as well as neurons.

This represents an important advance in delivering mRNA to the cell types that would be key in treating neurodegenerative diseases; any such treatments will need to ensure that mRNA arrives at the correct location. Previous work by the same researchers proved that LNPs can cross the BBB and deliver mRNA to the brain, but did not attempt to control which cells the LNPs targeted.

Wearing sunscreen is important to protect your skin from the harmful effects of UV radiation but doesn’t cool people off. However, a new formula, described in Nano Letters, protects against both UV light and heat from the sun using radiative cooling. The prototype sunblock kept human skin up to 11 degrees Fahrenheit (6 degrees Celsius) cooler than bare skin, or around 6 °F (3 °C) cooler than existing sunscreens.

Radiative cooling involves either reflecting or radiating heat away from something, cooling whatever’s underneath. It is already used to create cooling fabrics and coatings that could both cool and heat homes, among other applications.

Some passive technologies rely on an ingredient called (TiO2) because the whitish substance reflects heat. TiO2 particles are also used in mineral sunscreens to reflect UV light, but the particles aren’t the right size to produce a cooling effect. So, Rufan Zhang and colleagues wanted to tune the size of TiO2 nanoparticles to create a that works both as a UV protector and a radiative cooler.

Researchers at the University of Virginia have made significant advancements in understanding how heat flows through thin metal films, critical for designing more efficient computer chips.

This study confirms Matthiessen’s rule at the nanoscale, enhancing heat management in ultra-thin copper films used in next-generation devices, thereby improving performance and sustainability.

Breakthrough in Chip Technology.

Researchers recently made a groundbreaking discovery on the nanoscale: a new type of quasiparticle found in all magnetic materials, no matter their strength or temperature. These new properties shake up what researchers previously knew about magnetism, showing it’s not as static as once believed.

“Emergent topological quasiparticle kinetics in constricted nanomagnets,” was published in Physical Review Research. The researchers include Deepak Singh and Carsten Ullrich from the University of Missouri’s College of Arts and Science, along with their teams of students and postdoctoral fellows.

“We’ve all seen the bubbles that form in sparkling water or other carbonated drink products,” said Ullrich, Curators’ Distinguished Professor of Physics and Astronomy. “The quasiparticles are like those bubbles, and we found they can freely move around at remarkably fast speeds.”

Pervasive micropollutants in aquatic environments pose significant threats to global water supply safety. Here, authors achieved permeate concentrations below the detection limit (2.5 ng/L) using a CNT-based electrochemical membrane, with the contributions of adsorption and degradation distinguished.

Researchers are shining a light on cancer cells’ energy centers—literally—to damage these power sources and trigger widespread cancer cell death. In a new study, scientists combined strategies to deliver energy-disrupting gene therapy using nanoparticles manufactured to zero in only on cancer cells. Experiments showed the targeted therapy is effective at shrinking glioblastoma brain tumors and aggressive breast cancer tumors in mice.

The research team overcame a significant challenge to break up structures inside these cellular energy centers, called mitochondria, with a technique that induces light-activated electrical currents inside the cell. They named the technology mLumiOpto.

“We disrupt the membrane, so mitochondria cannot work functionally to produce energy or work as a signaling hub. This causes programmed followed by DNA damage—our investigations showed these two mechanisms are involved and kill the ,” said co-lead author Lufang Zhou, professor of biomedical engineering and surgery at The Ohio State University. “This is how the technology works by design.”

Researchers at the University of Sydney Nano Institute have made a significant advance in the field of molecular robotics by developing custom-designed and programmable nanostructures using DNA origami.

This innovative approach has potential across a range of applications, from targeted drug delivery systems to responsive materials and energy-efficient optical signal processing. The method uses ‘DNA origami’, so-called as it uses the natural folding power of DNA, the building blocks of human life, to create new and useful biological structures.

As a proof-of-concept, the researchers made more than 50 nanoscale objects, including a ‘nano-dinosaur’, a ‘dancing robot’ and a mini-Australia that is 150 nanometres wide, a thousand times narrower than a human hair.