Archive for the ‘nanotechnology’ category: Page 6

Nov 20, 2022

Quantum effects in memristive devices

Posted by in categories: encryption, nanotechnology, quantum physics, robotics/AI

At the nanoscale, the laws of classical physics suddenly become inadequate to explain the behavior of matter. It is precisely at this juncture that quantum theory comes into play, effectively describing the physical phenomena characteristic of the atomic and subatomic world. Thanks to the different behavior of matter on these length and energy scales, it is possible to develop new materials, devices and technologies based on quantum effects, which could yield a real quantum revolution that promises to innovate areas such as cryptography, telecommunications and computation.

The physics of very small objects, already at the basis of many technologies that we use today, is intrinsically linked to the world of nanotechnologies, the branch of applied science dealing with the control of matter at the nanometer scale (a nanometer is one billionth of a meter). This control of matter at the is at the basis of the development of new electronic devices.

Among these, are considered promising devices for the realization of new computational architectures emulating functions of our brain, allowing the creation of increasingly efficient computation systems suitable for the development of the entire artificial intelligence sector, as recently shown by Istituto Nazionale di Ricerca Metrologica (INRiM) researchers in collaboration with several international universities and research institutes.

Nov 19, 2022

Canon on cusp of nanoimprint chip-making revolution

Posted by in categories: computing, nanotechnology

Canon is moving ahead with a plan to build a new factory in Japan to double the production of its semiconductor lithography equipment.

The planned facility will produce both the standard KrF and i-line machines that constitute the bulk of the division’s sales and the nanoimprint tools that Canon hopes will open a new era in semiconductor manufacturing.

Addressing investors after the announcement of third-quarter results in late October, Canon’s management referred to “our leading-edge nanoimprint lithography equipment.”

Nov 19, 2022

#NBIC: Researchers designed a lipid nanoparticle that sticks to bone minerals, increasing mRNA delivery and therapeutic protein expression in the bone

Posted by in category: nanotechnology…bone-15543

Nov 18, 2022

Print a working paper computer on an $80 inkjet

Posted by in categories: computing, nanotechnology

Circa 2013 face_with_colon_three

“IMAGINE printing out a paper computer and tearing off a corner so someone else can use part of it.” So says Steve Hodges of Microsoft Research in Cambridge, UK. The idea sounds fantastical, but it could become an everyday event thanks in part to a technique he helped develop.

Hodges, along with Yoshihiro Kawahara and his team at the University of Tokyo, Japan, have found a way to print the fine, silvery lines of electronic circuit boards onto paper. What’s more, they can do it using ordinary inkjet printers, loaded with ink containing silver nanoparticles. Last month Kawahara demonstrated a paper-based moisture sensor at the Ubicomp conference in Zurich, Switzerland.

Continue reading “Print a working paper computer on an $80 inkjet” »

Nov 17, 2022

Engineers designed a new nanoscale 3D printing material that can be printed at a speed of 100 mm/s

Posted by in categories: 3D printing, drones, energy, nanotechnology, satellites

It’s all thanks to nanoclusters.

A new nanoscale 3D printing material developed by Stanford University engineers may provide superior structural protection for satellites, drones, and microelectronicsAn improved lightweight, a protective lattice that can absorb twice as much energy as previous materials of a similar density has been developed by engineers for nanoscale 3D printing.

According to the study led by Stanford University, a nanoscale 3D printing material, which creates structures that are a fraction of the width of a human hair, will enable to print of materials that are available for use, especially when printing at very small scales.

Continue reading “Engineers designed a new nanoscale 3D printing material that can be printed at a speed of 100 mm/s” »

Nov 17, 2022

3D-printing microrobots with multiple component modules inside a microfluidic chip

Posted by in categories: 3D printing, biotech/medical, chemistry, nanotechnology, robotics/AI

Scientists from the Department of Mechanical Engineering at Osaka University introduced a method for manufacturing complex microrobots driven by chemical energy using in situ integration. By 3D-printing and assembling the mechanical structures and actuators of microrobots inside a microfluidic chip, the resulting microrobots were able to perform desired functions, like moving or grasping. This work may help realize the vision of microsurgery performed by autonomous robots.

As medical technology advances, increasingly complicated surgeries that were once considered impossible have become reality. However, we are still far away from a promised future in which microrobots coursing through a patient’s body can perform procedures, such as microsurgery or cancer cell elimination.

Continue reading “3D-printing microrobots with multiple component modules inside a microfluidic chip” »

Nov 16, 2022

Researchers develop new, heat-efficient nanoparticles for treating cancer

Posted by in categories: biotech/medical, nanotechnology

Oregon State University scientists have invented a way to make magnetic nanoparticles that get hotter than any previous nanoparticle, improving their cancer fighting ability.

Faculty from the OSU College of Pharmacy spearheaded a collaboration that developed an advanced thermal decomposition method for producing able to reach temperatures in lesions of up to 50 degrees Celsius, or 122 degrees Fahrenheit, when exposed to an alternating magnetic field.

Findings of the preclinical study led by Oleh Taratula and Olena Taratula were published today in the journal Small Methods.

Nov 14, 2022

New Technologies that May be in the Cards

Posted by in categories: biotech/medical, cyborgs, drones, education, nanotechnology, nuclear energy, robotics/AI, satellites

Visit our sponsor, Brilliant:
Every day brings us new technological advances, today we’ll explore many of those of such as robotics, automation, rapid delivery, education, medical science, nanotechnology, and more.

Episodes referenced in the Episode:
Power Satellites:
Fusion Power:
Quiet Revolution:
The Santa Claus Machine:
Synthetic Meat:
Mind Augmentation:
Mind-Machine Interfaces:
Life Extension
The Science of Aging:
Happily Ever After:
Attack of the Drones:
Advanced Metamaterials:
Portable Power:
The Nuclear Option:
Moon: Industrial Complex:
Machine Rebellion:
The Paperclip Maximizer:
Technological Stagnation: Coming Soon.
Non-Carbon Based Life: Coming Soon.

Continue reading “New Technologies that May be in the Cards” »

Nov 13, 2022

Previously unseen processes reveal path to better rechargeable battery performance

Posted by in categories: chemistry, nanotechnology

To design better rechargeable ion batteries, engineers and chemists from the University of Illinois Urbana-Champaign collaborated to combine a powerful new electron microscopy technique and data mining to visually pinpoint areas of chemical and physical alteration within ion batteries.

A study led by materials science and engineering professors Qian Chen and Jian-Min Zuo is the first to map out altered domains inside rechargeable at the nanoscale—a 10-fold or more increase in resolution over current X-ray and optical methods.

The findings are published in the journal Nature Materials.

Nov 13, 2022

Researchers learn to engineer growth of crystalline materials consisting of nanometer-size gold clusters

Posted by in categories: chemistry, engineering, nanotechnology, particle physics

First insights into engineering crystal growth by atomically precise metal nanoclusters have been achieved in a study performed by researchers in Singapore, Saudi Arabia and Finland. The work was published in Nature Chemistry.

Ordinary solid matter consists of atoms organized in a crystal lattice. The chemical character of the atoms and lattice symmetry define the properties of the matter, for instance, whether it is a metal, a semiconductor or and electric insulator. The lattice symmetry may be changed by such as temperature or , which can induce structural transitions and transform even an electric insulator to an electric conductor, that is, a metal.

Larger identical entities such as nanoparticles or atomically precise metal nanoclusters can also organize into a , to form so called meta-materials. However, information on how to engineer the growth of such materials from their has been scarce since the is a typical self-assembling process.

Page 6 of 206First345678910Last