Toggle light / dark theme

Cryonics & Cryptography | Ralph Merkle at Vitalist Bay

Veteran cryonicist and inventor of cryptographic hashing, Ralph Merkle, tells us how he came to decide that cryonics was a good idea. In his talk, Ralph discusses Information Theoretic Death, why information is so hard to destroy, and how advances in nano-tech might make cryonics revival possible.

Links:
• Cryosphere Discord server: https://discord.com/invite/ndshSfQwqz.
• Cryonics subreddit: https://www.reddit.com/r/cryonics/
#cryosphere

Nanoparticles show potential for rheumatoid arthritis prevention and flare control

As a chronic condition, rheumatoid arthritis (RA) can’t be cured, so treatment focuses on managing the disease and controlling its progression. Although current treatments help control RA symptoms in most people, they cannot prevent the onset of RA or painful flare-ups.

Now, researchers publishing in ACS Central Science have developed nanoparticles that could slow and reduce flare severity, based on results from tests with and mice models with RA-like disease.

For a person diagnosed with RA, their attacks tissue that makes up the joints, causing inflammation, swelling and pain. However, as the disease progresses, serious cartilage and bone damage can occur if left uncontrolled.

First-Ever Images Capture Atoms “Wiggling” in Quantum Materials

Scientists have imaged atomic thermal vibrations for the first time, revealing hidden patterns that could redefine quantum and nano-electronic device design. Scientists studying atomic-level behavior in advanced electronic and quantum devices have successfully captured the first-ever microscopy i

Lipid nanoparticle stereochemistry shapes mRNA delivery safety and efficacy, study reveals

A team from the Max-Planck-Institut für Kohlenforschung, Hokkaido University, and Osaka University has discovered that subtle differences in molecular structure can have a major impact on the performance of mRNA-based drugs. Their findings, published in the Journal of the American Chemical Society, open the door to the development of safer and more effective vaccines and therapies.

To deliver therapeutic nucleic acids like mRNA into cells, scientists rely on (LNPs)—tiny, fat-based carriers that protect fragile genetic material, enabling it to survive in the body and reach target cells. A key component of these LNPs are ionizable lipids, which help mRNA enter cells and then release it effectively. One such lipid, ALC-315, was notably used in the Pfizer/BioNTech COVID-19 vaccine, a medical breakthrough that played a critical role in controlling the global pandemic.

Light-powered nano-motor winds molecular strands into chain-like structures

Threads or ropes can easily be used for braiding, knotting, and weaving. In chemistry, however, processing molecular strands in this way is an almost impossible task. This is because molecules are not only tiny, they are also constantly in motion and therefore cannot be easily touched, held or precisely shaped.

A research group at the Institute of Chemistry at Humboldt-Universität zu Berlin (HU) led by Dr. Michael Kathan has now succeeded in precisely winding two molecular strands around each other using an artificial, light-driven molecular motor, thereby creating a particularly complex structure: a catenane (from Latin “catena” = chain). Catenanes consist of two ring-shaped molecules that are intertwined like the links of a chain—without being chemically bonded to each other. The research results are published in the journal Science.

“What we have developed is basically a mini-machine that is powered by light and rotates in one direction,” says Kathan.

New imaging method reveals how light and heat generate electricity in nanomaterials

UC Riverside researchers have unveiled a powerful new imaging technique that exposes how cutting-edge materials used in solar panels and light sensors convert light into electricity—offering a path to better, faster, and more efficient devices.

The breakthrough, published in the journal Science Advances, could lead to improvements in solar energy systems and optical communications technology. The study title is “Deciphering photocurrent mechanisms at the nanoscale in van der Waals interfaces for enhanced optoelectronic applications.”

The research team, led by associate professors Ming Liu and Ruoxue Yan of UCR’s Bourns College of Engineering, developed a three-dimensional imaging method that distinguishes between two fundamental processes by which light is transformed into electric current in quantum materials.

Nanotechnology in AI: Building Faster, Smaller, and Smarter Systems

As artificial intelligence (AI) rapidly advances, the physical limitations of conventional semiconductor hardware have become increasingly apparent. AI models today demand vast computational resources, high-speed processing, and extreme energy efficiency—requirements that traditional silicon-based systems struggle to meet. However, nanotechnology is stepping in to reshape the future of AI by offering solutions that are faster, smaller, and smarter at the atomic scale.

The recent article published by AZoNano provides a compelling overview of how nanotechnology is revolutionizing the design and operation of AI systems, pushing beyond the constraints of Moore’s Law and Dennard scaling. Through breakthroughs in neuromorphic computing, advanced memory devices, spintronics, and thermal management, nanomaterials are enabling the next generation of intelligent systems.

/* */