Menu

Blog

Archive for the ‘nanotechnology’ category: Page 62

Oct 16, 2022

Turkish scientists develop ‘fiber sensor’ shoes for early diagnosis

Posted by in categories: biotech/medical, health, nanotechnology, wearables

A new technology that incorporates flexible fiber sensors into shoes has been developed by the National Nanotechnology Research Center (UNAM) at Bilkent University and is able to identify a number of health issues, including Parkinson’s disease and gait disorders.

Project manager Mustafa Ordu, who specialized in the production and characterization of fiber cables that can generate electricity for wearable devices, explained that the technology developed at UNAM is loaded with smart sensors that can monitor body movements and determine issues and diseases, with the potential to diagnose many health problems.

Further explaining the cutting-edge technology, he said that it can be woven into body wear or incorporated into footwear since by knitting these cables together like a type of threaded fabric, they can be incorporated into clothing as fibers. “This is what makes our team stand out among the existing laboratories in the world; we make smart sensors with flexible fiber and two-dimensional materials,” said Ordu.

Oct 16, 2022

Nanotechnology’s spring

Posted by in categories: nanotechnology, robotics/AI

Nanotechnology sometimes sounds as much like science fiction as artificial intelligence once did. But the problems holding it back seem solvable, and some of the answers may lie inside our own bodies.

Oct 16, 2022

Focal Point on Nanotechnology in Japan

Posted by in category: nanotechnology

Nanotechnology is already impacting our everyday lives, but it is set to deliver much greater benefits.

Oct 15, 2022

Graphene improves circuits in flexible and wearable electronics

Posted by in categories: computing, health, mobile phones, nanotechnology, wearables

At 200 times stronger than steel, graphene has been hailed as a super material of the future since its discovery in 2004. The ultrathin carbon material is an incredibly strong electrical and thermal conductor, making it a perfect ingredient to enhance semiconductor chips found in many electrical devices.

But while graphene-based research has been fast-tracked, the nanomaterial has hit roadblocks: in particular, manufacturers have not been able to create large, industrially relevant amounts of the material. New research from the laboratory of Nai-Chang Yeh, the Thomas W. Hogan Professor of Physics, is reinvigorating the graphene craze.

Continue reading “Graphene improves circuits in flexible and wearable electronics” »

Oct 14, 2022

Engineers weave advanced fabric that can cool a wearer down and warm them up

Posted by in categories: materials, nanotechnology

Textile engineers have developed a fabric woven out of ultra-fine nano-threads made in part of phase-change materials and other advanced substances that combine to produce a fabric that can respond to changing temperatures to heat up and cool down its wearer depending on need.

Materials scientists have designed an advanced textile with nano-scale threads containing in their core a phase-change material that can store and release large amounts of heat when the material changes phase from liquid to solid. Combining the threads with electrothermal and photothermal coatings that enhance the effect, they have in essence developed a fabric that can both quickly cool the wearer down and warm them up as conditions change.

A paper describing the manufacturing technique appeared in ACS Nano on August 10.

Oct 14, 2022

Fluctuation relations for irreversible emergence of information

Posted by in categories: biological, nanotechnology, particle physics, quantum physics

Information variations in a chain-like system are associated to energy transactions with the environment, which can take place reversibly or irreversibly, with a lower theoretical energy limit22,23. Fluctuations as a consequence of pure computations are on the order of the thermal level (i.e., similar to kT, being k the Boltzmann constant and T the absolute temperature), according to Landauer’s principle. Such energies are negligible at routine human scales but become significant when the size of the system is nanoscopic or smaller, because the work and heat it generates also compare with the thermal level. Small systems are based on nanostructures, including individual molecules and arrangements of atoms, such as biological and quantum systems.

Fluctuation theorems have appeared in recent years explaining quantitatively energy imbalances between forward and reverse pathways or between equilibrium and non-equilibrium processes24,25. They have been tested experimentally26,27,28, mostly in biomolecular systems analyzed on a one-by-one basis29. Most of these theorems establish relations among thermodynamic potentials for general systems, often with no specific insight into information theory. This theory, in turn, deals with spatially-indexed, 1-dimensional arrangements of symbols, which may not be necessarily associated to a time order. Recent generalizations separate the role of information and feedback control30,31, but still the interpretation of non-Markovianity, irreversibility and reversibility in terms of purely informational operations such as reading, writing and error correction32,33 remains obscured.

Here, we analyze energy exchanges associated to the symbolic management of a sequence of characters, without reference to the physical construction of the chain. Just by considering reversibility at the single sequence level and conservation laws, we next present two pairs of fluctuations equalities in the creation of information sequences, which use depends on energy exchange constraints. Our analysis integrates key information concepts, namely, reading, writing, proof reading and editing in the thermodynamic description of a string of symbols with information.

Oct 14, 2022

Scientists count electric charges in a single catalyst nanoparticle down to the electron

Posted by in categories: energy, food, nanotechnology

If you often find yourself off by one when counting your socks after doing the laundry, you might want to sit down for this.

Scientists in Japan have now counted the number of extra—or missing— down to a precision of just one electron in single platinum nanoparticles having diameters only one-tenth those of common viruses.

This new process for precisely studying differences in net charge on metal nanoparticles will aid in the further understanding and development of catalysts for breaking down greenhouse and other harmful gases into fuels and benign gases or for efficiently producing ammonia needed for fertilizers used in agriculture.

Oct 13, 2022

Researchers Develop a CRISPR-Based Therapy That Penetrates Solid Tumors

Posted by in categories: biotech/medical, nanotechnology

By packaging lipid nanoparticles with elements that decrease the fibrous nature of solid tumors, researchers can deliver CRISPR therapies in a more efficient manner.

Oct 12, 2022

The ‘dense’ potential of nanostructured superconductors

Posted by in categories: biotech/medical, computing, nanotechnology

From superfast magnetic levitation trains and computer chips to magnetic resonance imaging (MRI) machines and particle accelerators, superconductors are electrifying various aspects of our life. Superconductivity is an interesting property that allows materials to transfer moving charges without any resistance, below a certain critical point. This implies that superconducting materials can transfer electrical energy in a highly efficient manner without loss in the form of heat, unlike many conventional conductors.

Almost two decades ago scientists discovered superconductivity in a —magnesium diboride, or MgB2. There has been a resurgence in the of popularity MgB2 due to its low cost, superior superconducting abilities, high critical current density (which means that compared to other materials, MgB2 remains a semiconductor even when larger amounts of electric current is passed through it), and trapped magnetic fields arising from strong pinning of the vortices—which are cylindrical current loops or tubes of magnetic flux that penetrate a superconductor.

The intermetallic MgB2 also allows adjustability of its properties. For instance, the critical current density values (Jc) of MgB2 can be improved by decreasing the grain size and increasing the number of grain boundaries. Such adjustability is not observed in conventional layered superconductors.

Oct 10, 2022

QT/ Future sparkles for diamond-based quantum technology

Posted by in categories: nanotechnology, quantum physics

“It’s akin to cutting holes or carving gullies in a super thin sheet of diamond, to ensure light travels and bounces in the desired direction,” he said.

To overcome the “etching” challenge, the researchers developed a new hard masking method, which uses a thin metallic tungsten layer to pattern the diamond nanostructure, enabling the creation of one-dimensional photonic crystal cavities.

Page 62 of 257First5960616263646566Last