Toggle light / dark theme

Revolutionary Laser Propulsion: Caltech’s New Lightsail Innovation Promises Stellar Journeys

Discover how Caltech’s groundbreaking research on ultrathin light sails is revolutionizing space travel. This video explains the innovative design, precise measurements, and surprising discoveries that are paving the way for interstellar propulsion. Dive into the science behind using laser-driven membranes to propel spacecraft and learn why this breakthrough is a game-changer for future space exploration.

Paper link: https://www.nature.com/articles/s4156… 00:00 Introduction 00:57 Experimental Innovations in Lightsail Design 03:56 Precision Measurement of Radiation Pressure 07:37 Future Directions, Implications, and a Relevant Discovery 11:06 Outro 11:16 Enjoy MUSIC TITLE: Starlight Harmonies MUSIC LINK: https://pixabay.com/music/pulses-star… Visit our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nasaspacenewsagency #NSN #NASA #Astronomy#InterstellarLightsail #Caltech #SpaceExploration #BreakthroughStarshot #LaserPropulsion #Nanotechnology #SpaceTech #InterstellarTravel #LightsailDesign #Physics #Astrophysics #SpaceInnovation #RocketScience #FutureTech #LaserSail #PhotonPropulsion #SciTech #SpaceResearch #Astronomy #Innovation #ScienceNews #Interstellar #SpaceMission #LabResearch #Nanofabrication #EdgeScattering #RadiationPressure #Metamaterials #SpaceExplorationNews #NextGenTech.

Chapters:
00:00 Introduction.
00:57 Experimental Innovations in Lightsail Design.
03:56 Precision Measurement of Radiation Pressure.
07:37 Future Directions, Implications, and a Relevant Discovery.
11:06 Outro.
11:16 Enjoy.

MUSIC TITLE: Starlight Harmonies.
MUSIC LINK: https://pixabay.com/music/pulses-star

Visit our website for up-to-the-minute updates:
www.nasaspacenews.com.

Follow us.

Proposed solution could bring DNA-nanoparticles motors up to speed with motor proteins

DNA-nanoparticle motors are exactly as they sound: tiny artificial motors that use the structures of DNA and RNA to propel motion through enzymatic RNA degradation. Essentially, chemical energy is converted into mechanical motion by biasing the Brownian motion.

The DNA-nanoparticle motor uses the “burnt-bridge” Brownian ratchet mechanism. In this type of movement, the motor is propelled by the degradation (or “burning”) of the bonds (or “bridges”) it crosses along the substrate, essentially biasing its motion forward.

These nano-sized motors are highly programmable and can be designed for use in molecular computation, diagnostics, and transport.

Production of novel theranostic nano-vector based on superparamagnetic iron oxide nanoparticles/miR-497 targeting colorectal cancer

Colorectal cancer (CRC) is a serious public health concern worldwide. Immune checkpoint inhibition medication is likely to remain a crucial part of CRC clinical management. This study aims to create new super paramagnetic iron oxide nano-carrier (SPION) that can effectively transport miRNA to specific CRC cell lines. In addition, evaluate the efficiency of this nano-formulation as a therapeutic candidate for CRC. Bioinformatics tools were used to select a promising tumor suppressor miRNA (mir-497-5p). Green route, using Fusarium oxyporium fungal species, manipulated for the synthesis of SPION@Ag@Cs nanocomposite as a carrier of miR-497-5p. That specifically targets the suppression of PD1/PDL1 and CTLA4pathways for colorectal therapy. UV/visible and FTIR spectroscopy, Zeta potential and MTT were used to confirm the allocation of the miR-497 on SPION@Ag@Cs and its cytotoxicity against CRC cell lines. Immunofluorescence was employed to confirm transfection of cells with miR-497@NPs, and the down-regulation of CTLA4 in HT29, and Caco2 cell lines. On the other hand, PDL1 showed a significant increase in colorectal cell lines (HT-29 and Caco-2) in response to mir497-5p@Nano treatment. The data suggest that the mir-497-loaded SPION@Ag@Cs nano-formulation could be a good candidate for the suppression of CTLA4in CRC human cell lines. Consequently, the targeting miR-497/CTLA4 axis is a potential immunotherapy treatment strategy for CRC.


Elfiky, A.M., Eid, M.M., El-Manawaty, M. et al. Sci Rep 15, 4,247 (2025). https://doi.org/10.1038/s41598-025-88165-3

Download citation.

Electrically Controlled Nanogate Revolutionizes Molecular Movement

Scientists at Osaka University have designed a nanogate that opens and closes using electrical signals, offering precise control over ions and molecules.

This tiny innovation has the potential to transform sensing technology, chemical reactions, and even computing. By adjusting voltage, researchers can manipulate the gate’s behavior, making it a versatile tool for cutting-edge applications.

Nanogates: control at the macro and nanoscale.

Multidimensional sampling theory reduces noise to push flat optics boundaries

A research team at POSTECH has developed a novel multidimensional sampling theory to overcome the limitations of flat optics. Their study not only identifies the constraints of conventional sampling theories in metasurface design but also presents an innovative anti-aliasing strategy that significantly enhances optical performance. Their findings were published in Nature Communications.

Flat optics is a cutting-edge technology that manipulates light at the nanoscale by patterning ultra-thin surfaces with nanostructures. Unlike traditional optical systems that rely on bulky lenses and mirrors, enables ultra-compact, high-performance optical devices. This innovation is particularly crucial in miniaturizing smartphone cameras (reducing the “camera bump”) and advancing AR/VR technologies.

Metasurfaces, one of the most promising applications of flat optics, rely on hundreds of millions of nanostructures to precisely sample and control the phase distribution of light. Sampling, in this context, refers to the process of converting analog optical signals into discrete data points—similar to how the human brain processes visual information by rapidly capturing multiple images per second to create continuous motion perception.

Magnetic Fields Reshape the Movement of Sound Waves in a Stunning Discovery

The term “nanoscale” refers to dimensions that are measured in nanometers (nm), with one nanometer equaling one-billionth of a meter. This scale encompasses sizes from approximately 1 to 100 nanometers, where unique physical, chemical, and biological properties emerge that are not present in bulk materials. At the nanoscale, materials exhibit phenomena such as quantum effects and increased surface area to volume ratios, which can significantly alter their optical, electrical, and magnetic behaviors. These characteristics make nanoscale materials highly valuable for a wide range of applications, including electronics, medicine, and materials science.

New Nanotech Bandages Kill Bacteria and Speed Up Healing

Researchers have developed nanoflower-coated bandages with antibiotic and anti-inflammatory properties, capable of killing bacteria and promoting wound healing.

A carnation-like nanostructure could one day be used in bandages to promote wound healing. Researchers report in ACS Applied Bio Materials that laboratory tests of their nanoflower-coated dressings demonstrate antibiotic, anti-inflammatory, and biocompatible properties.

They state that these results indicate tannic acid and copper(II) phosphate sprouted nanoflower bandages are promising candidates for treating infections and inflammatory conditions.

/* */