Menu

Blog

Archive for the ‘nanotechnology’ category: Page 65

Sep 24, 2022

Energy storage materials built from nano-sized molecular blocks

Posted by in categories: chemistry, energy, nanotechnology

Molecules of the rare metallic element niobium can be used as molecular building blocks to design electrochemical energy storage materials. Mark Rambaran, Department of Chemistry at Umeå University, presents in his thesis a method for producing solid materials from aqueous solutions containing nano-sized niobium molecules, called polyoxoniobates.

“These polyoxoniobates are water-soluble and can be synthesized in large volumes. They act as , in the same way as when a child stacks Lego bricks,” Mark Rambaran says. “They can be used to make a wide range of materials, including supercapacitors that facilitate lithium-ion storage.”

Synthesis of polyoxoniobates can be done with microwave irradiation, because it is a rapid and efficient alternative to conventional hydrothermal methods, Mark Rambaran shows in his thesis.

Sep 23, 2022

Engineering living ‘scaffolds’ for building materials

Posted by in categories: bioengineering, biological, nanotechnology

When the inside of a mollusk shell shimmers in sunlight, the iridescence isn’t produced by colored pigments but by tiny physical structures self-assembled from living cells and inorganic components. Now, a team of researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) has developed a platform to mimic this self-assembly ability by engineering living cells to act as a starting point for building composite materials.

Engineered living (ELMs) use living as “materials scaffolds” and are a new class of material that might open the door to self-healing materials and other advanced applications in bioelectronics, biosensing, and smart materials. Such materials could mimic emergent properties found in nature—where a complex system has properties that the individual components do not have—such as iridescence or strength.

Borrowing from this complexity seen in nature, the Berkeley Lab researchers engineered a bacterium that can attach a wide range of nanomaterials to its cell surface. They can also precisely control the makeup and how densely packed the components are, creating a stable hybrid living material. The study describing their work was recently published in ACS Synthetic Biology.

Sep 23, 2022

How we are matching — or exceeding — nature’s ability to make strong, tough lightweight structural materials

Posted by in categories: energy, nanotechnology, transportation

In nature, wood, shells, and other structural materials are lightweight, strong, and tough. Significantly, these materials are made at the ambient temperature in the local environment – not at the high temperatures at which human-made structural materials are generally processed. Similar materials are difficult to make synthetically. In a review article in Nature Materials, a team of scientists assessed the common design motifs of a range of natural structural materials and determined what it would take to design and fabricate structures that mimic nature. They considered the remaining challenges to include the need for comprehensive characterization of strength and toughness to identify underlying multiscale mechanisms.

This comprehensive assessment provides new inspiration and understanding of design principles that may lead to more efficient synthetic approaches for advanced, lightweight structural materials for transportation, buildings, batteries, and energy conversion.

In the natural world, many of the structural materials (wood, shells, bones, etc.) are hybrid materials made up of simple constituents that are assembled at ambient temperatures and often have remarkable properties. Even though the constituent materials generally have poor intrinsic properties, the superior extrinsic properties of the hybrid materials are the result of the arrangement of hard and soft phases in complex hierarchical architectures, with dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and usually show interesting combinations of strength and toughness, even though these two key structural properties tend to be mutually exclusive. It is relatively easy to make materials that are strong or tough, but difficult to make materials that are both.

Sep 23, 2022

Scientists blasted plastic with lasers and turned it into tiny diamonds and a new type of water

Posted by in categories: nanotechnology, space

New research inspired by ice giants like Neptune and Uranus shows lasers can transform a common plastic into tiny diamonds.

Sep 22, 2022

Dr. Ralph Merkle — Nanotechnology & Cryonics — Preserving Ourselves for the Future

Posted by in categories: computing, cryonics, encryption, life extension, nanotechnology

Ralph C. Merkle is a computer scientist. He is one of the inventors of public key cryptography, the inventor of cryptographic hashing, and more recently a researcher and speaker of cryonics.

Videos in the talk: David Eagleman https://www.youtube.com/watch?v=-5tZtYns6kE molecular nanotechnology: https://www.youtube.com/watch?v=zqyZ9bFl_qg.

Filmed 2017/04/30

Sep 22, 2022

Differentiating right- and left-handed particles using the force exerted

Posted by in categories: nanotechnology, particle physics

Researchers investigated the polarization-dependence of the force exerted by circularly polarized light (CPL) by performing optical trapping of chiral nanoparticles. They found that left-and right-handed CPL exerted different strengths of the optical gradient force on the nanoparticles, and the D-and L-form particles are subject to different gradient force by CPL. The present results suggest that separation of materials according to their handedness of chirality can be realized by the optical force.

Chirality is the property that the structure is not superimposable on its mirrored image. Chiral materials exhibit the characteristic feature that they respond differently to left-and right-circularly polarized light. When is irradiated with strong laser light, optical is exerted on it. It has been expected theoretically that the optical force exerted on chiral materials by left-and right-circularly polarized light would also be different.

Continue reading “Differentiating right- and left-handed particles using the force exerted” »

Sep 20, 2022

Carbon nanotubes boost efficiency in “nanobionic” bacterial solar cells

Posted by in categories: cyborgs, nanotechnology, solar power, sustainability, transhumanism

Engineers at EPFL have found a way to insert carbon nanotubes into photosynthetic bacteria, which greatly improves their electrical output. They even pass these nanotubes down to their offspring when they divide, through what the team calls “inherited nanobionics.”

Solar cells are the leading source of renewable energy, but their production has a large environmental footprint. As with many things, we can take cues from nature about how to improve our own devices, and in this case photosynthetic bacteria, which get their energy from sunlight, could be used in microbial fuel cells.

In the new study, the EPFL team gave these bacteria a boost by inserting carbon nanotubes – tiny rolled-up sheets of graphene, a material that’s famously conductive. The nanotube-loaded bugs were able to produce up to 15 times more electricity than their non-edited counterparts from the same amount of sunlight.

Sep 18, 2022

Scientists discover bacteria that can use light to ‘breathe’ electricity

Posted by in categories: energy, nanotechnology

Researcher are now looking to make the most of this new discovery.

Did you know that bacteria in the natural world breathe by exhaling excess electrons, causing an intrinsic electrical grid? In a new study, Yale University researchers discovered that light could supercharge this electronic activity within biofilm bacteria, yielding an up to a 100-fold increase in electrical conductivity, according to a press release published by the institution earlier this month.


Yale researchers have found that bacteria buried underground have developed a way to respire by “breathing minerals” through tiny protein filaments called nanowires. This process can be amplified by light producing electricity.

Continue reading “Scientists discover bacteria that can use light to ‘breathe’ electricity” »

Sep 18, 2022

Scientists claim nanogenerators could produce significant electricity from sea waves

Posted by in categories: energy, nanotechnology

A group of researchers from China has found a way to use static energy to boost the power produced by wave energy. The invention could finally make the technology viable and efficient.

Sep 17, 2022

Ray Kurzweil: Singularity, Superintelligence, and Immortality | Lex Fridman Podcast #321

Posted by in categories: existential risks, life extension, nanotechnology, Ray Kurzweil, robotics/AI, singularity, virtual reality

New Kurzweil Vid!, September 17, 2022!


Ray Kurzweil is an author, inventor, and futurist. Please support this podcast by checking out our sponsors:
- Shopify: https://shopify.com/lex to get 14-day free trial.
- NetSuite: http://netsuite.com/lex to get free product tour.
- Linode: https://linode.com/lex to get $100 free credit.
- MasterClass: https://masterclass.com/lex to get 15% off.
- Indeed: https://indeed.com/lex to get $75 credit.

Continue reading “Ray Kurzweil: Singularity, Superintelligence, and Immortality | Lex Fridman Podcast #321” »

Page 65 of 257First6263646566676869Last