Toggle light / dark theme

Bacterial enzyme and nanoparticle discoveries hold promise for treating gut pain

Abdominal pain is a hallmark of many digestive disorders, including inflammatory bowel disease and irritable bowel syndrome. In an effort to develop targeted treatments for gut pain, scientists have discovered a new enzyme in gut bacteria and are using nanoparticles to deliver drugs inside cells.

Currently, there are no treatments specifically for gut pain, and existing painkillers are often insufficient at managing symptoms. These drugs—including opioids, NSAIDs, and steroids—also come with side effects, some of which directly harm the digestive system.

In two new studies published in Cell Host & Microbe and Proceedings of the National Academy of Sciences, researchers focused on PAR2, a receptor involved in pain signaling that has been shown to play a role in gastrointestinal diseases marked by inflammation and pain. Found on the lining of the gut and on pain-sensing nerves in the gut, PAR2 is activated by certain enzymes called proteases and is a promising target for treating gut pain—in numerous ways.

Two-step excitation unlocks and steers exotic nanolight

An international team of researchers has developed a novel technique to efficiently excite and control highly-confined light-matter waves, known as higher-order hyperbolic phonon polaritons. Their method not only sets new records for the quality and propagation distance of these waves but also uses a sharp boundary to create a form of pseudo-birefringence, sorting and steering the waves by mode into different directions.

This advance, published in Nature Photonics, opens new avenues for developing nanoscale optical devices for high-speed signal processing and ultra-sensitive chemical detection.

In the quest for ultra-compact, light-based circuits, scientists are turning to polaritons—hybrid modes formed from the coupling of light with optically active material excitations such as plasmons or phonons. These remarkable quasiparticles can squeeze light into spaces far smaller than its natural wavelength, overcoming the conventional limits of far-field optics. However, exciting most confined variants—higher-order polaritons—has been a major challenge, as they demand a much larger momentum boost than single-step excitation methods can deliver.

How a Molecular Motor Minimizes Energy Waste

Turning a biologically important molecular motor at a constant rate saves energy, according to experiments.

Within every biological cell is an enzyme, called adenosine triphosphate (ATP) synthase, that churns out energy-rich molecules for fueling the cell’s activity. New experiments investigate the functioning of this “energy factory” by artificially cranking one of the enzyme’s molecular motors [1]. The results suggest that maintaining a fixed rotation rate minimizes energy waste caused by microscopic fluctuations. Future work could confirm the role of efficiency in the evolutionary design of biological motors.

ATP synthase consists of two rotating molecular motors, Fo and F1, that are oriented along a common rotation axis and locked together so that the rotation of Fo exerts a torque on the shaft in the middle of F1. The resulting motion within F1 helps bring together the chemical ingredients of the molecule ATP, which stores energy that can later be used in cellular processes.

Scientists reverse Alzheimer’s in mice using nanoparticles

A research team co-led by the Institute for Bioengineering of Catalonia (IBEC) and West China Hospital Sichuan University (WCHSU), working with partners in the UK, has demonstrated a nanotechnology strategy that reverses Alzheimer’s disease in mice.

Unlike traditional nanomedicine, which relies on nanoparticles as carriers for therapeutic molecules, this approach employs nanoparticles that are bioactive in their own right: “supramolecular drugs.” The work has been published in Signal Transduction and Targeted Therapy.

Instead of targeting neurons directly, the therapy restores the proper function of the blood-brain barrier (BBB), the vascular gatekeeper that regulates the brain’s environment. By repairing this critical interface, the researchers achieved a reversal of Alzheimer’s pathology in animal models.

Researchers integrate waveguide physics into metasurfaces for advanced light control

Ultrathin structures that can bend, focus, or filter light, metasurfaces are reshaping how scientists think about optics. These engineered materials offer precise control over lights behavior, but many conventional designs are held back by inefficiencies. Typically, they rely on local resonances within individual nanostructures, which often leak energy or perform poorly at wide angles. These shortcomings limit their usefulness in areas like sensing, nonlinear optics, and quantum technologies.

A growing area of research looks instead to nonlocal metasurfaces, where interactions between many elements create collective optical effects. These collective behaviors can trap light more efficiently, producing sharper resonances and stronger interactions with matter. One of the most promising possibilities in this field is the development of photonic flatbands, where resonant behavior stays uniform across a wide range of viewing angles.

Another is creating chiral responses, which allow devices to distinguish between left-and right-handed circularly polarized light. Until now, however, achieving both flatband and chiral behavior with high efficiency on a single platform has remained a major challenge.

From engines to nanochips: Physicists redefine how heat really moves

Heat has always been something we thought we understood. From baking bread to running engines, the idea seemed simple: heat spreads out smoothly, like water soaking through a sponge. That simple picture, written down by Joseph Fourier 200 years ago, became the foundation of modern science and engineering.

But zoom into the nanoscale—inside the chips that power your smartphone, AI hardware, or next-generation solar panels—and the story changes. Here, heat doesn’t just “diffuse.” It can ripple like , remember its past, or flow in elegant streams like a fluid in a pipe. For decades, scientists had pieces of this puzzle but no unifying explanation.

Now, researchers at Auburn University and the U.S. Department of Energy’s National Renewable Energy Laboratory have delivered what they call a “unified statistical theory of heat conduction.”

Fat particles could be key to treating metabolic brain disorders

Evidence challenging the long-held assumption that neuronal function in the brain is solely powered by sugars has given researchers new hope of treating debilitating brain disorders. A University of Queensland study led by Dr. Merja Joensuu and published in Nature Metabolism showed that neurons also use fats for fuel as they fire off the signals for human thought and movement.

“For decades, it was widely accepted that relied exclusively on glucose to fuel their functions in the brain,” Dr. Joensuu said. “But our research shows fats are undoubtedly a crucial part of the neuron’s in the brain and could be a key to repairing and restoring function when it breaks down.”

Dr. Joensuu from the Australian Institute for Bioengineering and Nanotechnology along with lab members Ph.D. candidate Nyakuoy Yak and Dr. Saber Abd Elkader from UQ’s Queensland Brain Institute set out to examine the relationship of a particular gene (DDHD2) to hereditary spastic paraplegia 54 (HSP54).

/* */