Toggle light / dark theme

Phonon-mediated heat transport across materials visualized at the atomic level

Gao Peng’s research group at the International Center for Quantum Materials, School of Physics, Peking University, has developed a breakthrough method for visualizing interfacial phonon transport with sub-nanometer resolution. Leveraging fast electron inelastic scattering in electron microscopy, the team directly measured temperature fields and thermal resistance across interfaces, unveiling the microscopic mechanism of phonon-mediated heat transport at the nanoscale.

The study is published in Nature under the title “Probing transport dynamics across an interface by .”

Phonons are central to heat conduction, electrical transport, and light interactions. In modern semiconductor devices, phonon mismatches at material interfaces create significant thermal resistance, limiting performance. Yet, existing methods lack the spatial resolution needed for today’s sub-10 nm technologies.

Startup’s biosensor makes drug development and manufacturing cheaper

In the biotech and pharmaceutical industries, ELISA tests provide critical quality control during drug development and manufacturing. The tests can precisely quantify protein levels, but they also require hours of work by trained technicians and specialized equipment. That makes them prohibitively expensive, driving up the costs of drugs and putting research testing out of reach for many.

Now the Advanced Silicon Group (ASG), founded by Marcie Black ’94, MEng ’95, PhD ’03 and Bill Rever, is commercializing a new technology that could dramatically lower the time and costs associated with protein sensing. ASG’s proprietary sensor combines silicon nanowires with antibodies that can bind to different proteins to create a highly sensitive measurement of their concentration in a given solution.

The tests can measure the concentration of many different proteins and other molecules at once, with results typically available in less than 15 minutes. Users simply place a tiny amount of solution on the sensor, rinse the sensor, and then insert it into ASG’s handheld testing system.

“We’re making it 15 times faster and 15 times lower cost to test for proteins,” Black says. “That’s on the drug development side. This could also make the manufacturing of drugs significantly faster and more cost-effective. It could revolutionize how we create drugs in this country and around the world.”


Advanced Silicon Group, founded by MIT alumna Marcie Black, developed a protein sensor that could make drug development and manufacturing much faster and less expensive.

Gene-editing nanoparticle system targets multiple organs simultaneously

A gene-editing delivery system developed by UT Southwestern Medical Center researchers simultaneously targeted the liver and lungs of a preclinical model of a rare genetic disease known as alpha-1 antitrypsin deficiency (AATD), significantly improving symptoms for months after a single treatment, a new study shows. The findings, published in Nature Biotechnology, could lead to new therapies for a variety of genetic diseases that affect multiple organs.

“Multi-organ diseases may need to be treated in more than one place. The development of multi-organ-targeted therapeutics opens the door to realizing those opportunities for this and other diseases,” said study leader Daniel Siegwart, Ph.D., Professor of Biomedical Engineering, Biochemistry, and in the Harold C. Simmons Comprehensive Cancer Center at UT Southwestern.

Gene editing—a group of technologies designed to correct disease-causing mutations in the genome—has the potential to revolutionize medicine, Dr. Siegwart explained. Targeting these technologies to specific organs, tissues, or will be necessary to effectively and safely treat patients.

Passive cooling paint sweats off heat to deliver 10X cooling and 30% energy savings

A new cement-based paint can cool down the building by sweating off the heat. The cooling paint, named CCP-30, was designed by an international team of researchers and features a nanoparticle-modified porous structure composed of a calcium silicate hydrate (C-S-H) gel network.

This design enabled it to achieve superior cooling by combining both radiative, evaporative and reflective cooling mechanisms, which allowed it to reflect 88–92% of sunlight, emit 95% of the heat as , and hold about 30% of its weight in water, making it a paint ideal for keeping spaces cool throughout the day and across seasons.

As per the findings published in Science, the paint provides 10 times the cooling power of commercial cooling paints in tropical climates, resulting in electricity savings of 30 to 40%.

Electron microscopy technique captures nanoparticle organizations to forge new materials

A research team including members from the University of Michigan have unveiled a new observational technique that’s sensitive to the dynamics of the intrinsic quantum jiggles of materials, or phonons.

This work will help scientists and engineers better design metamaterials—substances that possess exotic properties that rarely exist in nature—that are reconfigurable and made from solutions containing nanoparticles that self-assemble into larger structures, the researchers said. These materials have wide-ranging applications, from shock absorption to devices that guide acoustic and optical energy in high-powered computer applications.

“This opens a new research area where nanoscale building blocks—along with their intrinsic optical, electromagnetic and —can be incorporated into mechanical metamaterials, enabling emerging technologies in multiple fields from robotics and mechanical engineering to information technology,” said Xiaoming Mao, U-M professor of physics and co-author of the new study.

Scientists Say Humans May Become Immortal by 2050 Here’s How

Will humans soon live forever? Scientists believe it’s possible — and it could happen as early as 2050.
In this video, we explore 10 shocking scientific breakthroughs that are pushing humanity closer to immortality.
From nanobots that cure disease from within, to brain uploading, cloning organs, and AI-driven consciousness — this is the future of life itself.

🧬 Get ready to discover the jaw-dropping technologies that might just make death optional.

⚠️ Don’t blink. The future is coming faster than you think.

Profiles in Versatility

During her uncle’s treatment in 2003, Green experienced what she refers to as a “divine download”—an electrifying idea inspired by her college internships at NASA’s Marshall Space Flight Center and the Institute of Optics. “If a satellite in outer space can tell if a dime on the ground is face up or face down, and if a cell phone can target just one cell phone on the other side of the planet,” she recalls thinking, “surely we should be able to harness the technology of lasers to treat cancer just at the site of the tumor, so we won’t have all of these side effects.”

In the nearly two decades that followed, Dr. Green rerouted her career, earned a physics PhD from the University of Alabama at Birmingham—the second Black woman to do so—and dove into cancer treatment research, with physics as her guide. In 2009, she developed a treatment that uses nanoparticles and lasers in tandem: Specially designed nanoparticles are injected into a solid tumor, and, when the tumor is hit with near infrared light, the nanoparticles heat up, killing the cancer cells. In a preliminary animal study published in 2014, Green tested the treatment on mice, whose tumors were eliminated with no observable side effects.


When Hadiyah-Nicole Green crossed the stage at her college graduation, she felt sure about what would come next. She’d start a career in optics—a good option for someone with a bachelor’s degree in physics—and that would be that.

Life, though, had other plans. The day after she graduated from Alabama A&M University, she learned that her aunt, Ora Lee Smith, had cancer. Smith and her husband had raised Green since she was four years old, after the death of Green’s mother and then grandparents.

Her aunt “said she’d rather die than experience the side effects of chemo or radiation,” says Green, now a medical physicist and founder and CEO of the Ora Lee Smith Cancer Research Foundation.

Nanoscale phonon dynamics in self-assembled nanoparticle lattices

The realization and phonon imaging of nanoscale mechanical metamaterials has remained challenging. Here the authors resolve the phonon dynamics and band structures of five different self-assembled nanoparticle lattices, revealing the role of nanoscale colloidal interactions in modulating the lattice properties.