Toggle light / dark theme

Engineers at MIT and the University of Massachusetts Medical School have designed a new type of nanoparticle that can be administered to the lungs, where it can deliver messenger RNA encoding useful proteins.

With further development, these could offer an inhalable treatment for and other diseases of the , the researchers say.

“This is the first demonstration of highly efficient delivery of RNA to the lungs in mice. We are hopeful that it can be used to treat or repair a range of genetic diseases, including cystic fibrosis,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

“You won’t live forever” is a catchphrase which has often been touted and has so far remained the proven truth of life — of humans and almost every other living being on planet earth. But soon, this catchphrase may well become the truth of the past, as humanity steps forward to attain immortality.

A former Google scientist has made a prediction, which if proven right, may redefine human civilisation as we know it. Ray Kurzweil, whose over 85 per cent of 147 predictions have been proven right, has predicted that humans will become immortal by 2029.

The revelation came when the 75-year-old computer scientist dwelled upon genetics, nanotechnology, robotics and more in a YouTube video posted by channel Adagio.

Nanomedicine uses nanomaterials [e.g., carbon nanotubes (CNTs), nanoparticles, and nanodiscs] or organic nanostructures (e.g., DNA origami and liposomes) for drug delivery (810), medical imaging (1114), and tissue regeneration (15). Nanomaterials offer therapeutic efficacy through their tissue permeation, interaction with an external energy source, and capability to be combined with other therapeutic modalities (16, 17). Because we recently demonstrated that GBM cells are mechanosensitive (18), we set to use nanomaterials to develop a nanoscale mechanical approach to treat GBM. Mechanical perturbation has been investigated as an approach to target cancer cells. For example, magnetic field–actuated nanomaterials compromise the integrity of plasma membrane, leading to the death of in vitro–cultured GBM cells (19) and breast cancer cells (20). GBM cells, which were preincubated with magnetic nanoparticles, were implanted into mice to generate xenograft tumors. A rotating magnetic field, which was then applied to these magnetic particles–harboring tumors, suppressed GBM growth (21). Similarly, magnetic field mobilization of mitochondria-targeting magnetic nanoparticle chains demonstrated efficacy in inhibiting GBM growth in mice (22). While these studies showed that magnetic field–controlled nanomaterials can be used in cancer treatment, the utility of magnetic nanomaterials in treating chemoresistant tumors, the root cause of tumor relapse and patient death, remains unexplored.

GBM displays an extreme level of heterogeneity at genomic, epigenetic, biochemical signaling, and cellular composition levels (23). The heterogeneous nature of GBM confers treatment resilience to tumors and leads to a unifying therapy resistance mechanism; i.e., suppressing selected proteins or biochemical pathways provides a fertile ground for alternative signaling mechanisms, which are not targeted by the given therapy, to fuel GBM growth (24). In other words, the “whack-a-mole” approach failed to benefit patients with GBM for decades. For this reason, we hypothesized that nanomaterial-based mechanical treatment of cancer cells, rather than specific targeting of signaling pathways, can overcome the therapy resistance of this biologically plastic disease. To this end, we engineered a mechanical nanosurgery approach using magnetic CNTs (mCNTs; nanotubes with carbon surface and a cavity filled with iron particles) based on the following reasons.

Cambridge researchers have discovered a new topological phase in a two-dimensional system, which could be used as a new platform for exploring topological physics in nanoscale devices.

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and . Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

It was recently discovered that in materials such as (hBN), which are less symmetric than graphene, ferroelectricity occurs when one layer slides over the other and breaks a symmetry. Ferroelectricity is the switching of a material’s with an , which is a useful property for information processing and memory storage.

One can only hope.


A former Google engineer has just predicted that humans will achieve immortality in eight years, something more than likely considering that 86% of his 147 predictions have been correct.

Ray Kurzweil visited the YouTube channel Adagio, in a discussion on the expansion of genetics, nanotechnology and robotics, which he believes will lead to age-reversing ‘nanobots’.

These tiny robots will repair damaged cells and tissues that deteriorate as the body ages, making people immune to certain diseases such as cancer.

Thanks for watching!! Comment Anything As Ud Like!!

In this educational film scientists and engineers explain the construction of materials beginning at an atomic scale.

NO.5 Documentaries 2017 — How Will Nanotechnology Change the World Documentaries 2017 — How Will Nanotechnology Change the World Documentaries.

Documentary National Geographic Future Wearable NanoTechnology 2017 Future Are Here BBC Documentary Full.

Winner Best short film at the Scinema Science film festival 2017. Where and what is nano? How will it shape our future? Nanoscience is the study of.

Macromolecular machines acting on genes are at the core of life’s fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of “machines on genes”, focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications.

Caltech engineers have made a significant breakthrough in the field of nano-and micro-architected materials by creating a novel material composed of multiple interconnected microscale knots.

Compared to structurally identical but unknotted materials, the presence of knots in this new material significantly enhances its toughness by enabling it to absorb more energy and deform more before returning to its original shape without any damage. These new knotted materials may find applications in biomedicine as well as in aerospace applications due to their durability, possible biocompatibility, and extreme deformability.

“The capability to overcome the general trade-off between material deformability and tensile toughness [the ability to be stretched without breaking] offers new ways to design devices that are extremely flexible, durable, and can operate in extreme conditions,” says former Caltech graduate student Widianto P. Moestopo (MS ‘19, Ph.D. ’22), now at Lawrence Livermore National Laboratory. Moestopo is the lead author of a paper on the nanoscale.

An exploration in nanotechnology and how even as highly advanced as it could be, might show no technosignature or SETI detectable signal, thus if all alien civilizations convert to a nanotechnological existence, then this would solve the Fermi Paradox.

My Patreon Page:

https://www.patreon.com/johnmichaelgodier.

My Event Horizon Channel:

https://www.youtube.com/eventhorizonshow.

Music:

Speaker: George Tulevski, materials science engineer at IBM Research.

The exceptional electronic properties of carbon nanotubes, coupled with their small size, makes them ideal materials for future nanoelectronic devices. The integration of these materials into advanced microprocessors requires a radical shift in fabrication from conventional top-down process to bottom-up assembly where advances in sorting and directed assembly are needed. This presentation will briefly describe the challenges to future transistor scaling, highlight the advantages of employing carbon nanotubes for digital logic and describe the recent progress in this area.