Toggle light / dark theme

A team of researchers from Yale and the University of Connecticut (UConn) has developed a nanoparticle-based treatment that targets multiple culprits in glioblastoma, a particularly aggressive and deadly form of brain cancer.

The results are published in Science Advances (“Anti-seed PNAs targeting multiple oncomiRs for brain tumor therapy”).

A new treatment developed by Yale researchers uses bioadhesive nanoparticles that adhere to the site of the tumor and then slowly release the synthesized peptide nucleic acids that they’re carrying. In this image, the nanoparticles (red) are visible within human glioma tumor cells (green with blue nuclei). (Image: Yale Cancer Center)

Dr. Nick Melosh at the BrainMind Summit hosted at Stanford, interviewed by BrainMind member Christian Bailey.

Nick Melosh is a Professor of Materials Science and Engineering, Stanford University. Nick’s research at Stanford focuses on how to design new inorganic structures to seamlessly integrate with biological systems to address problems that are not feasible by other means. This involves both fundamental work such as to deeply understand how lipid membranes interact with inorganic surfaces, electrokinetic phenomena in biologically relevant solutions, and applying this knowledge into new device designs. Examples of this include “nanostraw” drug delivery platforms for direct delivery or extraction of material through the cell wall using a biomimetic gap-junction made using nanoscale semiconductor processing techniques. We also engineer materials and structures for neural interfaces and electronics pertinent to highly parallel data acquisition and recording. For instance, we have created inorganic electrodes that mimic the hydrophobic banding of natural transmembrane proteins, allowing them to ‘fuse’ into the cell wall, providing a tight electrical junction for solid-state patch clamping. In addition to significant efforts at engineering surfaces at the molecular level, we also work on ‘bridge’ projects that span between engineering and biological/clinical needs. My long history with nano-and microfabrication techniques and their interactions with biological constructs provide the skills necessary to fabricate and analyze new bio-electronic systems.”

Learn more about BrainMind: https://brainmind.org/
Apply to BrainMind: https://brainmind.org/application

Science fiction has become a reality with recent developments toward biohacking through nanotechnology. Soon, science and industries may soon realize the potential of human hacking… but at what risk versus reward? Medical nanotechnology is one of these such topics. Many experts believe nanotechnology will pave the way for a bright, new future in improving our wellbeing. Yet, at the core of this biohacking are machines and as we’ve seen with other technologies — there are very real risks of malicious intent. In this video, we share some of the applications being developed combining nanotechnology and medicine. We also look at the potential risks found in the practice and how we may mitigate issues before they’re problematic. We also share how companies can reduce security flaws and curb public perception so the nanotechnology industry can flourish without major setbacks. Want to learn more about this budding area of science and medicine?

See our accompanying blog post for the details and be sure to dig around the site, here:

Hacking Humans with Nanotechnology

#nanotech #nanotechhacking

Scientists from the Tsukuba Research Center for Energy Materials Science at the University of Tsukuba demonstrated a simple method to produce ionic liquid microdroplets that work as flexible, long-lasting, and pneumatically tunable lasers. Unlike existing “droplet lasers” that cannot operate under atmosphere, this new development may enable lasers that can be used in everyday settings.

Lotus plants are prized for their beauty, and have a remarkable self-cleaning property. Instead of flattening on the surface of a lotus leaf, will form near-perfect spheres and roll off, taking dust with them. This “lotus effect” is caused by microscopic bumps in the leaf. Now, a team of researchers at the University of Tsukuba have taken advantage of an artificial lotus effect to create that can act like lasers, while remaining stable for up to a month. Currently available “droplet lasers” cannot be used under , since they will simply evaporate unless enclosed inside a container.

In this new research, an ionic liquid called 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) was mixed with a dye that allows it to become a laser. This liquid was chosen because it evaporates very slowly and has a relatively large surface tension. Then, a quartz substrate is coated with tiny fluorinated silica nanoparticles to make the surface repel liquids. When the EMIBF4 is deposited on it from a pipette, the tiny droplets remain almost completely spherical. The researchers showed that the droplet could remain stable for 30 days at least.

Is Director of the Division of Research, Innovation and Ventures (DRIVe — https://drive.hhs.gov/) at the Biomedical Advanced Research and Development Authority (https://aspr.hhs.gov/AboutASPR/ProgramOffices/BARDA/Pages/default.aspx), a U.S. Department of Health and Human Services (HHS) office responsible for the procurement and development of medical countermeasures, principally against bioterrorism, including chemical, biological, radiological and nuclear (CBRN) threats, as well as pandemic influenza and emerging diseases.

Dr. Patel is committed to advancing high-impact science, building new products, and launching collaborative programs and initiatives with public and private organizations to advance human health and wellness. As the DRIVe Director, Dr. Patel leads a dynamic team built to tackle complex national health security threats by rapidly developing and deploying innovative technologies and approaches that draw from a broad range of disciplines.

Dr. Patel brings extensive experience in public-private partnerships to DRIVe. Prior to joining the DRIVe team, he served as the HHS Open Innovation Manager. In that role, he focused on advancing innovative policy and funding solutions to complex, long-standing problems in healthcare. During his tenure, he successfully built KidneyX, a public-private partnership to spur development of an artificial kidney, helped design and execute the Advancing American Kidney Health Initiative, designed to catalyze innovation, double the number of organs available for transplant, and shift the paradigm of kidney care to be patient-centric and preventative, and included a Presidential Executive Order signed in July 2019. He also created the largest public-facing open innovation program in the U.S. government with more than 190 competitions and $45 million in awards since 2011.

Prior to his tenure at HHS, Dr. Patel co-founded Omusono Labs, a 3D printing and prototyping services company based in Kampala, Uganda; served as a scientific analyst with Discovery Logic, (a Thomson Reuters company) a provider of systems, data, and analytics for real-time portfolio management; and was a Mirzayan Science and Technology Policy Fellow at The National Academies of Science, Engineering, and Medicine. He also served as a scientist at a nanotechnology startup, Kava Technology.

Rheumatoid arthritis (RA), known as “immortal cancer,” is a chronic, progressive autoimmune inflammatory disease. The development and application of an RA high-sensitivity theranostics probe can help to accurately monitor the progression and realize the efficient treatment of RA.

In a study published in Advanced Science, a research group led by Prof. Zhang Yun from Fujian Institute of Research on the Structure of Matter of the Chinese Academy of Sciences developed a dual-triggered theranostics based on persistent luminescence nanoparticles (PLNPs) for RA autofluorescence-free imaging-guided precise treatment and therapeutic evaluation.

The researchers first prepared a renewable near-infrared (NIR)-emitting Zn1.3 Ga1.4 Sn0.3 O4:0.5%Cr3+, 0.3%Y3+ (ZGSO) PLNPs by a facile mesoporous silica template method.

Researchers have learned much about neutrinos over the past few decades, but some mysteries remain unsolved. For example, the standard model predicts that neutrinos are massless, but experiments say otherwise. One possible solution to this mass mystery involves another group of neutrinos that does not interact directly via the weak nuclear force and is therefore extremely difficult to detect. David Moore of Yale University and his colleagues have proposed a way to search for these so-called sterile neutrinos using a radioactive nanoparticle suspended in a laser beam [1].

Moore and his colleagues suggest levitating a 100-nm-diameter silica sphere in an optical trap and cooling it to its motional ground state. If the nanoparticle is filled with nuclei that decay by emitting neutrinos—such as certain argon or phosphorous isotopes—then electrons and neutrinos zipping from decaying nuclei should give it a momentum kick. By measuring the magnitude of this kick, the team hopes to determine the neutrinos’ momenta. Although most of these neutrinos will be the familiar three neutrino flavors, sterile neutrinos—if they exist—should also occasionally be emitted, producing unexpectedly small momentum kicks. Moore says that monitoring a single nanoparticle for one month would equate to a sterile-neutrino sensitivity 10 times better than that of any experiment tried so far.

Moore and his team are currently working on a proof-of-principle experiment using alpha-emitting by-products of radon, which result in a larger momentum kick. Once the techniques are optimized, they expect that switching to beta-decaying isotopes will let them see heavy sterile neutrinos in the 0.1–1 MeV mass range. Introducing more quantum tricks to manipulate the nanoparticle’s quantum state will make future experiments sensitive to even lighter sterile neutrinos.

The emerging quantum technology industry offers a dynamic career pathway for creative and adaptable physical scientists, as Stuart Woods of Oxford Instruments NanoScience explains.

As quantum technology companies shift gears to translate their applied research endeavours into commercial opportunities – at scale – they’re going to need ready access to a skilled and diverse quantum workforce of “all the talents”. A case study in this regard is Oxford Instruments NanoScience, a division of parent group Oxford Instruments, the long-established UK provider of specialist technologies and services to research and industry.

The NanoScience business unit, for its part, designs and manufactures research tools to support the development, scale-up and commercialization of next-generation quantum technologies. Think cryogenic systems (operating at temperatures as low as 5 mK) and high-performance magnets that enable researchers to harness the exotic properties of quantum mechanics – entanglement, tunnelling, superposition and the like – to yield practical applications in quantum computing, quantum communications, quantum metrology and quantum imaging.

Get a glimpse of the future and be amazed by the technological advancements that await us in the year 2100. Our video features top 10 predictions that will shape the world of technology in the next century. From fully immersive virtual reality to advanced artificial intelligence and nanotechnology, this video is packed with exciting insights.

We’ll dive into the possibilities of space colonization and teleportation, explore the potential of augmented reality and fusion energy, and look at the rise of robot assistants and mind uploading. Get ready to be amazed by the holographic displays that will take virtual experiences to a whole new level.

This video is perfect for anyone who wants to stay ahead of the curve and be informed about the future of technology. Subscribe now and turn on the notification bell to never miss an update. Optimize your viewing experience by turning on closed captions.

Leave a comment and let us know which prediction you’re most excited about. Join the discussion and share your thoughts on the future of technology. Don’t wait, watch now!