Toggle light / dark theme

Physicists model chromosome folding, reveal how loops affect spatial organization of the genome

Human chromosomes are long polymer chains that store genetic information. The nucleus of each cell contains the entire human genome (DNA) encoded on 46 chromosomes with a total length of about 2 meters. To fit into the microscopic cell nucleus and at the same time provide constant access to genetic information, chromosomes are folded in the nucleus in a special, predetermined way. DNA folding is an urgent task at the intersection of polymer physics and systems biology.

A few years ago, as one of the mechanisms of chromosome folding, researchers put forward a hypothesis of active extrusion of loops on chromosomes by molecular motors. Although the ability of motors to extrude DNA in vitro has been demonstrated, observing loops in a living cell experimentally is a technically very difficult, almost impossible, task.

A team of scientists from Skoltech, MIT, and other leading scientific organizations in Russia and the U.S. have presented a physical model of a polymer folded into loops. The analytical solution of this model allowed scientists to reproduce the universal features of chromosome packing based on the experimental data—the image shows the peak-dip derivative curve of the contact probability.