Toggle light / dark theme

😀


Cellular senescence, a state of permanent growth arrest, has emerged as a hallmark and fundamental driver of organismal aging. It is regulated by both genetic and epigenetic factors. Despite a few previously reported aging-associated genes, the identity and roles of additional genes involved in the regulation of human cellular aging remain to be elucidated. Yet, there is a lack of systematic investigation on the intervention of these genes to treat aging and aging-related diseases.

How many aging-promoting genes are there in the human genome? What are the molecular mechanisms by which these genes regulate aging? Can gene therapy alleviate individual aging? Recently, researchers from the Chinese Academy of Sciences have shed new light on the regulation of aging.

Recently, researchers from the Institute of Zoology of the Chinese Academy of Sciences (CAS), Peking University, and Beijing Institute of Genomics of CAS have collaborated to identify new human senescence-promoting genes by using a genome-wide CRISPR/Cas9 screening system and provide a new therapeutic approach for treating aging and aging-related pathologies.

BOSTON (PRWEB) November 18, 2020

What does it mean for multiplying cells in the body to be immortal? The cell DNA is being replicated over and over again while being divided equally between new cells produced by cell divisions. All the new cell components produced by the DNA code are mixing with the old cell components and being divided between the new cells. So, every cell is a new cell. There is nothing really immortal about any of them. Right?

Not quite. Stem cells responsible for renewing other mature body cells are different. For a long time, tissue cell scientists had a somewhat nebulous idea that stem cells had a special longevity in organs and tissues – that they were immortal cells, lasting for as long as the human lifespan. However, no one had a molecular concept for this idea of stem cell immortality until John Cairns, a pioneer of DNA replication, started thinking about DNA mutations and cancer in the 1970’s.

In America, at least 17 people a day die waiting for an organ transplant. But instead of waiting for a donor to die, what if we could someday grow our own organs?

Last week, six years after NASA announced its Vascular Tissue Challenge, a competition designed to accelerate research that could someday lead to artificial organs, the agency named two winning teams. The challenge required teams to create thick, vascularized human organ tissue that could survive for 30 days.

The two teams, named Winston and WFIRM, both from the Wake Forest Institute for Regenerative Medicine, used different 3D-printing techniques to create lab-grown liver tissue that would satisfy all of NASA’s requirements and maintain their function.

“We did take two different approaches because when you look at tissues and vascularity, you look at the body doing two main things,” says Anthony Atala, team leader for WFIRM and director of the institute.

The two approaches differ in the way vascularization—how blood vessels form inside the body—is achieved. One used tubular structures and the other spongy tissue structures to help deliver cell nutrients and remove waste. According to Atala, the challenge represented a hallmark for bioengineering because the liver, the largest internal organ in the body, is one of the most complex tissues to replicate due to the high number of functions it performs.

HOMA calculator: https://www.omnicalculator.com/health/homa-ir.

Papers referenced in the video:
Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice.
https://pubmed.ncbi.nlm.nih.gov/24175087/

Glucose regulation and oxidative stress in healthy centenarians.
https://pubmed.ncbi.nlm.nih.gov/12543271/

Distribution of blood glucose and prevalence of diabetes among centenarians and oldest-old in China: based on the China Hainan Centenarian Cohort Study and China Hainan Oldest-old Cohort Study.

Experts predict that we’ll be able to live up to 20% longer over the next 100 years. Here’s how humans are trying to live forever. Andrea Schmitz and Benji Jones Apr 3, 2019, 12:00 PM @ These potential treatments for aging could unlock cures to a range of age-related illnesses, from cancer to heart disease – Charlotte Hu Aug 20, 2018, 1:21 PM @ Animals that defy the rules of aging — like naked mole rats — could help scientists unravel the secrets to longevity – Charlotte Hu Aug 15, 2018, 2:54 PM @ Everything you thought you knew about aging is wrong – Erin Brodwin Apr 27, 2016, 12:13 PM *© 2021 Insider Inc. @ Other very important information, images, YouTube Videos (Ray Kurzweil – Physical Immortality – 3 de jan. de 2017 & Ray Kurzweil + Disruptive Technologies and Dangerous Ideas – 5 de dez. de 2017), websites, social networks and links.

Hello everybody! In this episode, we interview Felix Werth, a trully hero of the rejuvenation field: in 2015 he created a party in Germany to defend more investments in our field, and his party is contesting the general elections in the country on September 26th 2021! However, he needs our help right now, since his party has until July 19th to collect enough signatures to participate in 14 German states covering 98% of the country’s population. So be sure to check the interview and the party’s website (https://parteifuergesundheitsforschung.de) to see how you can help.


In this episode of ImmortaliCast, Nicolas and Nina talk to Felix Werth, the founder and leader of the German Party for Health Research, a party with a single issue: 10% of the government budget should be spent on research for the development of treatments of age-related diseases. The party will contest the German general elections of September 26th 2021.

Party for Health Research website: https://parteifuergesundheitsforschung.de.

We may have progressed beyond drinking mercury to try to prolong life. Instead, by a British government estimate, we have what may be called the ‘immortality industrial research complex’ – using genomics, artificial intelligence and other advanced sciences, and supported worldwide by governments, big business, academics and billionaires – that’s worth US$110 billion today and US$610 billion by 2025.


We are living longer than at any time in human history. And while the search is on for increased longevity if not immortality, new research suggests biological constraints will ultimately determine when you die.

This product came out months ago with some shocking numbers as to effect. But those effects were in mice tests. 10–20% increase in lifespan and 55% increase in healthspan. It is AKG, Rejuvant, it’s a product you can buy now. There will be a part 2 of this interview so I hope to hear about human data.


Here we present an interview with Tom Weldon the founder and CEO of Ponce de Leon Health, which makes Rejuvant a Calcium AKG based supplement. In this video Tom talks through the process and reasons for selecting CaAKG. He also talks about some of the other results that they found in their tests, especially with respect to mixing different supplements and their combined effects.

This it part 1 of a two part series. In part 2 we talk about his personal experience and on going clinical trials. With that let me start the interview.

There are Sirt6 activators on the market, but since we are not seeing any major news about results I would question their value.


SPONSOR: Longevity. Technology — https://www.longevity.technology/?utm_source=SSS&utm_medium=
aign=Sirt6

Sirtuins are highly conserved proteins that are involved in a variety of important cellular processes such as DNA repair, metabolism and circadian rhythms. The mammalian sirtuins (SIRT1-7) are a family of proteins that carry out NAD+-dependent protein deacylation and mono-ADP-ribosylation. These modifications on proteins can influence their stability, localisation within a cell and activity.