Toggle light / dark theme

🇬🇧FREE WEBINAR🇼đŸ‡č: https://draronica.com/free-webinar/

In this Ask Me Anything interview, Prof. Matt Kaeberlein discusses the evidence (and lack thereof) behind popular anti-aging supplements and interventions. Starting from his current research on rapamycin for healthy longevity in dogs (The Dog Aging Project), he describes the promises and perils of anti-aging medicine and shares with us some tips on how to become better critical thinkers and protect us from hype and snake oil.

This interview is a must watch for everyone who wants to develop a critical stance toward the field of longevity research and balance enthusiasm with evidence.

I hope you enjoy this interview!

TIMESTAMPS
00:00 Introduction.
04:33 Definitions: Aging, lifespan, healthspan.
09:08 What is biohacking.
14:56 The Dog Aging project.
19:39 Rapamycin: Longevity effects in mice.
22:28 Can rapamycin impair muscle growth? Is it in contraindicated for people who want to build muscle mass?
27:09 Exercise, inhibition of mTor, and rationale for cycling rapamycin and exercise.
29:46 Getting around the growth vs. resilience tradeoff in longevity.
32:00 Epigenetic clocks: Hope vs. hype.
32:43 Best functional markers of longevity.
36:30 Sterile inflammation, auto-immunity, and immune senescence.
40:24 The best and worst longevity supplements for Matt Kaeberlein.
45:50 What longevity hacks Matt implements in his own life.
48:00 Lucia’s and Matt’s thoughts on calorie restriction for longevity.
50:30 How can people discriminate between science and sneak oil?

đŸ¶ The Dog Aging project: https://dogagingproject.org/

At least, that was the assumption in the second half of the 19th century. This scenario became known as the “heat death” of the universe, and it seemed to be the nail in the coffin for any optimistic cosmology that promised, or even allowed, eternal life and consciousness. For example, one of the most popular cosmological models of the time was put forth by the evolutionary theorist Herbert Spencer, a contemporary of Charles Darwin who was actually more famous than him during their time. Spencer believed that the flow of energy through the universe was organizing it. He argued that biological evolution was just part of a larger process of cosmic evolution, and that life and human civilization were the current products of a process of continual cosmic complexification, which would ultimately lead to a state of maximal complexity, integration and balance among all things.

When the prominent Irish physicist John Tyndall told Spencer about the heat death hypothesis in a letter in 1858,” Spencer wrote him back to say it left him “staggered”: “Indeed, not seeing my way out of the conclusion, I remember being out of spirits for some days afterwards. I still feel unsettled about the matter.”

Things got even gloomier when the Austrian physicist Ludwig Boltzmann put forward a new statistical interpretation of the second law in the latter half of the 19th century. That was when the idea that the universe is growing more disordered came into the picture. Boltzmann took the classical version of the second law — that useful energy inevitably dissipates — and tried to give it a statistical explanation on the level of molecules colliding and spreading out. He used one of the simplest models possible: a gas confined to a box.

“People on metformin have 30% lower rates of almost every kind of cancer. It delays cognitive decline. Even people with diabetes who are obese and have more disease to start with but are on metformin have lower mortality rates than people without diabetes who aren’t on the drug.”

What he says is born out in numerous studies. Overall, this safe, super-cheap, decades-old drug not only treats diabetes, but it also seems to delay and compress the years of chronic illness associated with the final stage of life and extend what geroscientists call the “healthspan.”

Metformin is just one of many medications, including other old ones and some brand new inventions, that academic researchers and biotech startups are exploring to slow, stop, or perhaps even reverse aging.

While the mental has often played second fiddle to the physical when it comes to longevity research, this is changing – and not a moment too soon.

The physical and mental aspects of aging are interconnected, and given the strong connection between psychology and the physical pace of aging, poor mental health is starting to be recognised as a major driver of aging.

A raft of developments have demonstrated that physical lifespan and healthspan can be extended and improved, and now it is time for the longevity industry to achieve similar success when it comes to mental health. Sergey Jakimov, the CEO of Swiss investment group LongeVC agrees, and tells us why it’s time for VCs to get excited about backing startups delivering cutting-edge solutions for mental healthcare.

At just 40 years old, Kristen Fortney has spent more than half of her life thinking about the science of aging. But why?

“When I get asked this question I usually blame it on reading too much science fiction,” the CEO and co-founder of the clinical-stage biotech BioAge Labs said with a laugh. “My co-founder, Eric Morgen, and I have been talking about aging since high school.”

George Church is a geneticist known for his pioneering work in developing new technologies for genome sequencing, editing, and synthesis. He has also been involved in research on genome engineering and gene therapy.

Links.

George Church, Ph.D.


https://arep.med.harvard.edu/

PODCAST INFO:
The Learning With Lowell show is a series for the everyday mammal. In this show we’ll learn about leadership, science, and people building their change into the world. The goal is to dig deeply into people who most of us wouldn’t normally ever get to hear. The Host of the show – Lowell Thompson-is a lifelong autodidact, serial problem solver, and founder of startups.

LINKS
Youtube: https://www.youtube.com/channel/UCzri06unR-lMXbl6sqWP_-Q
Youtube clips: https://www.youtube.com/channel/UC-B5x371AzTGgK-_q3U_KfA
Linkedin: https://www.linkedin.com/in/lowell-thompson-2227b074
Twitter: https://twitter.com/LWThompson5
Website: https://www.learningwithlowell.com/

Timestamp / show notes.
00:00 Intro.
00:40 Changing millions of lives.
01:35 Unknowns in Biology / Fan question.
04:30 Space / Aliens.
05:18 Exciting projects.
08:15 Sequencing 8 billion people.
10:25 Making Organisms Virus proof.
12:00 Viruses adapting to changing.
15:55 Making IP actionable.
18:25 Transition to startups / issues.
22:30 Longevity and healthspan for older populations.
27:20 Rejuvenation vs cure.
29:40 Last 5 years/ surprises.
33:10 1 million cell edits.
34:40 Reduced returns with more edits at one time.
38:20 Software as biology / opportunity in biotech.
41:35 Hiding data in cells.
43:40 Synthetic biology relieving poverty.
47:45 Biohacking, chinese box, relieving poverty continues.
50:53 Producing good/submarine.
53:25 Synthetic biology for energy production.
57:51 Wooly mammoth genes / fan q.
1:02:30 Control characteristics with food.
1:03:50 Expediting gestation period.
1:06:00 External womb.
1:08:55 Problems /tools he wishes he had.
1:12:25 Cost of gene therapies from rejuvenation bio / fan question.
1:18:22 Virus gene drive.
1:21:10 Next 10 years.
1:23:02 CIRSPR CRPS pain question.
1:26:33 Books.
1:32:42 Calico lab CTO?

#georgechurch #syntheticbiology #biomanufacturing

Call it naive, call it crazy, but I think we have a real chance to tackle aging in this century. And though it’s not easy — it’s very simple.

If you have seen the banner of this channel — it says it’s all. But in this video I go deeper into my personal story and motivation. This way I hope you can understand why I’m doing what I’m doing.

So pick your role and let’s work!
Worse case scenario — we’ll live for extra 20 healthy years. Best case
 well, well we might stop or reverse aging all together.

Requirements to cure aging:

Aging Cure Requirements /v.0.2

My longevity budget plan for the next several years: (immortality on a budget)

Extending lifespan on a budget.

This channels is designed around the idea that we all have a good chance to live to and past 100 by doing these two things:

So much here I never knew:


Dr. Axel Montagne is a chancellor’s fellow and group leader at the UK Dementia Research Institute at the University of Edinburgh Centre for Clinical Brain Sciences. His group aims to understand how, when, and where critical components of the blood-brain barrier become dysfunctional preceding dementia and in the earliest stages of age-related cognitive decline. With this knowledge, they hope to develop precise treatments targeting brain vasculature to protect brain function.

More importantly his work, and that of his colleagues, provide a critical lens through which to view the contributions of vascular dysfunction (or, conversely, vascular health – if we choose to preserve it) as a critical common thread in dementia and neurodegeneration.

EPISODE LINKS:
Show notes and transcript: https://www.foundmyfitness.com/episodes/axel-montagne.
Montagne lab website: https://montagnelab.com/
Axel Montagne — Google Scholar: https://scholar.google.com/citations?user=dRTfpRoAAAAJ
Twitter: @AxL_Montagne: https://twitter.com/AxL_Montagne.

PODCAST INFO:

In recent decades, extracellular vesicles have been recognized as “very important particles” (VIPs) associated with aging and age-related disease. During the 1980s, researchers discovered that these vesicle particles released by cells were not debris but signaling molecules carrying cargoes that play key roles in physiological processes and physiopathological modulation. Following the International Society for Extracellular Vesicles (ISEV) recommendation, different vesicle particles (e.g., exosomes, microvesicles, oncosomes) have been named globally extracellular vesicles. These vesicles are essential to maintain body homeostasis owing to their essential and evolutionarily conserved role in cellular communication and interaction with different tissues. Furthermore, recent studies have shown the role of extracellular vesicles in aging and age-associated diseases.

We’ve known about telomeres for more than 80 years, but these tiny, protective structures at the end of the chromosomes keep revealing secrets to us, including the possibility of having surprising functions.

It turns out that these key biological cogs can produce proteins, something previously thought impossible due to their simplicity.

While it’s not clear yet what these proteins might do, the fact that they exist at all is significant.