Menu

Blog

Archive for the ‘life extension’ category: Page 158

Sep 15, 2022

DNA clocks suggest ageing is pre-programmed in our cells

Posted by in categories: biotech/medical, life extension

Looking at DNA in a tissue sample is now all you need to accurately work out the age of almost any mammal, and this reveals something fundamental about ageing.

Sep 15, 2022

Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO

Posted by in categories: biotech/medical, evolution, life extension

The biotech platform that is leveraging one of the cornerstones of evolution – mitochondria.

Mitochondria play a crucial role in the aging process, activating factors and metabolic pathways involved in longevity. Their dysfunction impacts on both lifespan and healthspan, and whilst they have been identified as disease targets for some time, mitochondria have proven difficult to treat.

Continue reading “Unlocking the power of cell-derived medicines with Dr Alex Schueller, Cellvie’s CEO” »

Sep 15, 2022

Can we live longer? Physicist makes discovery about telomeres

Posted by in categories: biotech/medical, life extension

With the aid of physics and a minuscule magnet, researchers have discovered a new structure of telomeric DNA. Telomeres are sometimes seen as the key to living longer. They protect genes from damage but get a bit shorter each time a cell divides. If they become too short, the cell dies. The new discovery will help us understand aging and disease.

Physics is not the first scientific discipline that springs to mind at the mention of DNA. But John van Noort from the Leiden Institute of Physics (LION) is one of the scientists who found the new DNA structure. A biophysicist, he uses methods from physics for biological experiments. This also caught the attention of biologists from Nanyan Technological University in Singapore. They asked him to help study the DNA structure of . They have published the results in Nature.

Sep 15, 2022

Pretzel Therapeutics Launches with $72M to Advance Mitochondrial Therapies

Posted by in categories: biotech/medical, genetics, life extension

Biotech start-up Pretzel Therapeutics launched Monday with $72.5 million in Series A financing to develop novel, mitochondria-based therapies for rare genetic disorders and diseases of aging.

Pretzel plans to target mitochondrial diseases, a highly heterogenous group of conditions caused by DNA mutations in the mitochondria or the nucleus. These disorders are very rare, afflicting around one in 5,000 people.

Pretzel CEO Jay Parrish told BioSpace the fundingshould enable us to get close to the clinic if not into the clinic with one or more programs.”

Sep 15, 2022

Aubrey de Grey: scientist who says humans can live for 1,000 years

Posted by in category: life extension

Hugo Cox.

At the end of a winding dirt track off Bear Creek Road, a few miles from Los Gatos in California’s Santa Cruz mountains is the home of Aubrey de Grey, the 53-year-old English research scientist from whom the claim originates. It looks exactly like the place you would expect a mad professor to live.

Sep 13, 2022

A Single Protein Could Unlock Age-Related Vision Loss

Posted by in categories: life extension, neuroscience

Summary: Determining the structure of vitronectin, a protein implicated in age-related macular degeneration and some neurodegenerative disorders, and using pressure to alter the protein shape may help in the development of new treatments for AMD.

Source: Sanford Burnham Prebys.

Research led by Sanford Burnham Prebys professor Francesca Marassi, Ph.D., is helping to reveal the molecular secrets of macular degeneration, which causes almost 90% of all age-related vision loss.

Sep 12, 2022

Is Japan’s Anti Aging Vaccine the Future of Longevity?

Posted by in categories: biotech/medical, life extension

Japan is investing a lot into Longevity Research in hopes of keeping us young forever. And recently, they managed to bring about a new kind of vaccine which…

Sep 12, 2022

Senolytic elimination of senescent macrophages restores muscle stem cell function in severely dystrophic muscle

Posted by in categories: biotech/medical, life extension

Senescent macrophages are in fact also found to express senescence-related markers p16(Ink4a) and β-galactosidase (β-gal), and promote inflammation in diseased tissues [25, 26]. Our previous work has indicated increased cellular senescence in dystrophic muscles of mdx/utr(−/−) mice [3], however, whether or not macrophages in particular develop cellular senescence and promote senescence associated phenotypes was still unknown. To this end, here we further examined mdx/utr(−/−) mice and solved these puzzles.

Immune cells in the skeletal muscle are activated during muscle injury and promote the process of muscle regeneration by coordinating with muscle stem cells. However, studies with severely diseased muscles further demonstrate that immune cells can become dominantly activated and is inductive of increased fatty infiltration and fibrosis formation, while at the same time potently repress the proliferation and function of muscle stem cells [27]. Our current results in severely dystrophic muscle reveal a similar situation of interaction between macrophages and MPCs, showing that the function of MPCs is repressed by the senescent macrophages. As senescent cells accumulate in the aged or diseased tissues, it can exert profound effects on the growth and function of normal cells by releasing SASPs [9, 10].

Sep 11, 2022

The Axolotl Can Regenerate Their Own Brains: New Research

Posted by in categories: biotech/medical, life extension, neuroscience

Axolotls Can Regenerate Their Own Brains: New research maps out the different cell types hoping to pave the way to regenerative medicine!

Sep 11, 2022

Scientists Discover a Molecular Switch That Controls Life Expectancy

Posted by in categories: biotech/medical, computing, life extension

O.o!!!


According to recent research, the protein CHIP can control the insulin receptor more effectively while acting alone than when in a paired state. In cellular stress situations, CHIP often appears as a homodimer – an association of two identical proteins – and mainly functions to destroy misfolded and defective proteins. CHIP thus cleanses the cell. In order to do this, CHIP works with helper proteins to bind a chain of the small protein ubiquitin to misfolded proteins.

As a result, the cell detects and gets rid of defective proteins. Furthermore, CHIP controls insulin receptor signal transduction. CHIP binds to the receptor and degrades it, preventing the activation of life-extending gene products.

Continue reading “Scientists Discover a Molecular Switch That Controls Life Expectancy” »