Toggle light / dark theme

At just 40 years old, Kristen Fortney has spent more than half of her life thinking about the science of aging. But why?

“When I get asked this question I usually blame it on reading too much science fiction,” the CEO and co-founder of the clinical-stage biotech BioAge Labs said with a laugh. “My co-founder, Eric Morgen, and I have been talking about aging since high school.”

George Church is a geneticist known for his pioneering work in developing new technologies for genome sequencing, editing, and synthesis. He has also been involved in research on genome engineering and gene therapy.

Links.

George Church, Ph.D.


https://arep.med.harvard.edu/

PODCAST INFO:
The Learning With Lowell show is a series for the everyday mammal. In this show we’ll learn about leadership, science, and people building their change into the world. The goal is to dig deeply into people who most of us wouldn’t normally ever get to hear. The Host of the show – Lowell Thompson-is a lifelong autodidact, serial problem solver, and founder of startups.

LINKS

Call it naive, call it crazy, but I think we have a real chance to tackle aging in this century. And though it’s not easy — it’s very simple.

If you have seen the banner of this channel — it says it’s all. But in this video I go deeper into my personal story and motivation. This way I hope you can understand why I’m doing what I’m doing.

So pick your role and let’s work!
Worse case scenario — we’ll live for extra 20 healthy years. Best case… well, well we might stop or reverse aging all together.

Requirements to cure aging:

So much here I never knew:


Dr. Axel Montagne is a chancellor’s fellow and group leader at the UK Dementia Research Institute at the University of Edinburgh Centre for Clinical Brain Sciences. His group aims to understand how, when, and where critical components of the blood-brain barrier become dysfunctional preceding dementia and in the earliest stages of age-related cognitive decline. With this knowledge, they hope to develop precise treatments targeting brain vasculature to protect brain function.

More importantly his work, and that of his colleagues, provide a critical lens through which to view the contributions of vascular dysfunction (or, conversely, vascular health – if we choose to preserve it) as a critical common thread in dementia and neurodegeneration.

In recent decades, extracellular vesicles have been recognized as “very important particles” (VIPs) associated with aging and age-related disease. During the 1980s, researchers discovered that these vesicle particles released by cells were not debris but signaling molecules carrying cargoes that play key roles in physiological processes and physiopathological modulation. Following the International Society for Extracellular Vesicles (ISEV) recommendation, different vesicle particles (e.g., exosomes, microvesicles, oncosomes) have been named globally extracellular vesicles. These vesicles are essential to maintain body homeostasis owing to their essential and evolutionarily conserved role in cellular communication and interaction with different tissues. Furthermore, recent studies have shown the role of extracellular vesicles in aging and age-associated diseases.

We’ve known about telomeres for more than 80 years, but these tiny, protective structures at the end of the chromosomes keep revealing secrets to us, including the possibility of having surprising functions.

It turns out that these key biological cogs can produce proteins, something previously thought impossible due to their simplicity.

While it’s not clear yet what these proteins might do, the fact that they exist at all is significant.

Aging is a complex process, a river fed by several tributaries connected by countless interweaving streams. Its direction is set inexorably towards infirmity, or so it would first appear. Daunting as navigation may seem, their interrelatedness should inspire hope instead of fear.

Aging is undeniably the root of the most common and costly noncommunicable diseases in the developed world, as well as a predisposing factor to severe or fatal reactions to infectious ones. Whatever can be done to slow, halt, or reverse its course holds inestimable economic and humanitarian value (Lee, 2017).

The hallmarks of aging were assembled to broadly conceptualize what lies behind phenomena as seemingly unrelated as gray hair, wrinkles, heart disease, cognitive decline, and cancer. They serve as explanations for why everything from our joints to our eyesight steadily give out over time.

Talking about E5.


Rats are also useful for aging research and for cooking ratatouille. But in all seriousness, take a look at this recent headline article — “We have the oldest living female Sprague Dawley rat,” said Dr Harold Katcher, a former biology professor at the University of Maryland, now chief scientific officer at Yuvan Research, a California-based startup.

So, Rejuvenation & rats. That’s what we’re talking about today, and how this rat has apparently become the longest living rat for its species following concentrated plasma injections from young blood plasma, and what this could mean for human therapeutics, along my perspectives. But, before we get there we must go back, back to the late 1950s and early 1960…to a time when The Sheekey Science Show did not exist, but when researchers, such as Clive McKay did, and these researchers were conducting a procedure called heterochronic parabiosis.

Here’s a new story on my AI & ChatGPT ideas from Singularity Group (Singularity University). Special thanks Steven Parton & Valeria Graziani:


In episode 90 of the Feedback Loop Podcast: “The Current State of Transhumanism,” we catch up with one of our first guests on the show, çΩΩ≈ΩΩ

The swift progress in biotechnology, artificial intelligence (AI), and neuroscience has been a significant contributor to the growth of transhumanism. Nevertheless, despite the increasing interest in this field, many remain apprehensive about the consequences of employing technology to augment the human body and mind. Ongoing discussions revolve around the ethics of creating superhumans, the possible hazards of artificial intelligence, and the potential societal impact of these technologies.

So according to Zoltan Istavan what’s changed and what is waiting for us in the future?