Thank you to today’s sponsors:⚡️ Sign up and download for FREE using my link: https://bit.ly/GrammarlyITPique Tea: 15% off + Free Frother Link: https://bit.ly/GrammarlyITPique
Category: life extension – Page 151
Is 150 years really as long as we can ever live?
While most of us can expect to live to around 80, some people defy expectations and live to be over 100. In places such as Okinawa, Japan and Sardinia, Italy, there are many centenarians.
The oldest person in history – a French woman named Jeanne Calment – lived to 122. When she was born in 1,875, the average life expectancy was roughly 43.
But just how long could a human actually live? It’s a question people have been asking for centuries. While average life expectancy (the number of years a person can expect to live) is relatively easy to calculate, maximum lifespan estimates (the greatest age a human could possibly reach) are much harder to make. Previous studies have placed this limit close to 140 years of age. But a more recent study proposes that the limit to human lifespan is closer to 150.
UW Researchers Show That Introduced Tardigrade Proteins Can Slow Metabolism in Human Cells
University of Wyoming researchers have gained further insight into how tardigrades survive extreme conditions and shown that proteins from the microscopic creatures expressed in human cells can slow down molecular processes.
This makes the tardigrade proteins potential candidates in technologies centered on slowing the aging process and in long-term storage of human cells.
The new study, published in the journal Protein Science, examines the mechanisms used by tardigrades to enter and exit from suspended animation when faced by environmental stress. Led by Senior Research Scientist Silvia Sanchez-Martinez in the lab of UW Department of Molecular Biology Assistant Professor Thomas Boothby, the research provides additional evidence that tardigrade proteins eventually could be used to make life-saving treatments available to people where refrigeration is not possible — and enhance storage of cell-based therapies, such as stem cells.
Key aspect of aging reversed in mice
In a study published by Stanford University, old mice developed more youthful immune systems after treatment with an antibody targeting abnormal stem cells.
As we age, so too does our immune system. This decline, known as immunosenescence, makes us more susceptible to infections, chronic inflammation, and diseases like cancer.
Turning back the clock on aging immune systems: New treatment rejuvenates elderly defenses
🧬🔬🐁
The effects of aging on the immune system
The aging immune system is associated with reduced lymphopoiesis, increased inflammation, and myeloid diseases due to alterations in self-renewing HSCs. During childhood, bal-HSCs predominate, thereby facilitating lymphopoiesis and adaptive immune responses.
Age increases my-HSCs, which reduces lymphopoiesis and enhances myelopoiesis. Myeloid-HSC origin and possible interconversions are unclear; however, removing my-HSCs in aged mice may reverse the aging phenotype.
Max More — Do you Like Living? Try Medical Time Travel — Cryopreservation
Talks about Medical Time Travel and Cryopreservation.
Plasma Metabolites Of A Healthy Lifestyle In Relation To Mortality And Longevity
Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links: At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgartenUse Code: C…
Neuropeptide Lacking in Diabetics Promotes Wound Healing
“In adults with diabetes alone—where poor blood flow can lead to quickly worsening wounds that are often very slow or impossible to heal—the lifetime risk of developing a diabetic foot ulcer (DFU), the most common diabetes-related wound, is 20–35 percent and this number is rising with increased longevity and medical complexity of people with diabetes,” stated lead author, Yen-Zhen Lu, PhD, an investigator at ARMI.
Nociceptors— neurons that sense pain, tissue damage, and inflammation, among other functions— respond to wounds by producing a neuropeptide called calcitonin gene-related peptide (CGRP). “Nociceptor endings grow into injured skin and muscle tissues and signal to immune cells through the neuropeptide CGRP during the healing process,” the authors wrote. Immune cell response in neutrophils, monocytes, and macrophages are modified to encourage active repair in the region.
Individuals with diseases like diabetes or elderly people have reduced production of CGRP, leading to poor, inefficient, or incomplete wound healing. The new study explores the impact of CGRP alone by introducing it into diabetic mice as well as mice without nociceptors. “Delivery of an engineered version of CGRP accelerated wound healing and promoted muscle regeneration,” the authors wrote. “Remarkably, this neuropeptide acts on immune cells to control them, facilitating tissue healing after injury,” added co-author Mikaël Martino, PhD, associate professor, ARMI.