Menu

Blog

Archive for the ‘genetics’ category: Page 46

Feb 26, 2024

Ancient retroviruses played a key role in the evolution of vertebrate brains, suggest researchers

Posted by in categories: biotech/medical, evolution, genetics, neuroscience

Researchers report in the journal Cell that ancient viruses may be to thank for myelin—and, by extension, our large, complex brains.

The team found that a retrovirus-derived genetic element or “retrotransposon” is essential for myelin production in mammals, amphibians, and fish. The , which they dubbed “RetroMyelin,” is likely a result of ancient viral infection, and comparisons of RetroMyelin in mammals, amphibians, and fish suggest that retroviral infection and genome-invasion events occurred separately in each of these groups.

“Retroviruses were required for vertebrate evolution to take off,” says senior author and neuroscientist Robin Franklin of Altos Labs-Cambridge Institute of Science. “If we didn’t have retroviruses sticking their sequences into the vertebrate genome, then myelination wouldn’t have happened, and without myelination, the whole diversity of vertebrates as we know it would never have happened.”

Feb 26, 2024

Risk Factors for Young-Onset Dementia

Posted by in categories: biotech/medical, education, genetics, neuroscience

Investigators identified 15 factors that affect risk for young-onset dementia.


Limited data are available on risk factors for young-onset dementia. In this study, researchers assessed 39 potential risk factors for young-onset dementia from data in the UK Biobank. Participants 65 years of age or older without a dementia diagnosis were included in the analysis. Potential risk factors were grouped into sociodemographic factors, genetic factors, lifestyle factors, environmental factors, blood marker factors, cardiometabolic factors, psychiatric factors, and other risk factors.

Among 359,052 participants, the mean age at baseline was 55 years and 55% were women. There were 485 incident all-cause young-onset dementia cases after a mean follow-up of 8 years. Incident young-onset dementia increased with age and was more common in men. Fewer years of formal education, lower socioeconomic status, the presence of two apolipoprotein E ℇ4 alleles, no alcohol use, alcohol use disorder, social isolation, vitamin D deficiency (1 mg/dL), lower handgrip strength, hearing impairment, orthostatic hypotension, stroke, diabetes, heart disease, and depression were associated with higher risk for young-onset dementia in fully adjusted models. Men with diabetes were more likely to have young-onset dementia than men without diabetes, and women with high C-reactive protein were more likely to have young-onset dementia than women with low C-reactive protein levels.

Continue reading “Risk Factors for Young-Onset Dementia” »

Feb 25, 2024

The Last Piece of Our Genome: Sequencing the Y Chromosome

Posted by in categories: biotech/medical, genetics, health

Groundbreaking research led by a global group of over 100 researchers will enable a more in-depth exploration of human genetic variation as fully sequencing the Y chromosome, a feat that has challenged scientists for years, has been accomplished for the first time. In this interview, we speak to Dylan Taylor about this impactful research and how it may shape our understanding of human genetics.

Please could you introduce yourself and your current research activities?

I am Dylan Taylor, a Ph.D. candidate and NIH F31 fellow in the Department of Biology at Johns Hopkins University. My work with the T2T consortium focuses on exploring how a complete reference genome can improve our ability to study human genetic variation and how it impacts human traits and health.

Feb 25, 2024

Is Low LDL Bad For The Epigenetic Pace of Aging?

Posted by in categories: genetics, life extension

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhDDiscount Links: DunedinPACE: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ62UkA

Feb 24, 2024

Healthy eating and activity reverse aging marker in kids with obesity, Stanford Medicine-led study finds

Posted by in categories: biotech/medical, food, genetics, life extension

A genetic marker linked to premature aging was reversed in children with obesity during a six-month diet and exercise program, according to a recent study led by the Stanford School of Medicine.

Children’s telomeres — protective molecular “caps” on the chromosomes — were longer during the weight management program, then were shorter again in the year after the program ended, the study found. The research was published last month in Pediatric Obesity.

Continue reading “Healthy eating and activity reverse aging marker in kids with obesity, Stanford Medicine-led study finds” »

Feb 24, 2024

Genetic variants, neurocognitive outcomes, and functional neuroimaging in survivors of childhood acute lymphoblastic leukemia

Posted by in categories: biotech/medical, genetics, sex

A study involving long-term acute lymphoblastic leukemia (ALL) survivors found certain genetic variants related to the folate pathway, glucocorticoid regulation, and other factors were associated with impaired attention, motor skills, memory, and more. Read the article here:


Genetic predispositions may modulate risk for developing neurocognitive late effects in childhood acute lymphoblastic leukemia (ALL) survivors.

Methods.

Continue reading “Genetic variants, neurocognitive outcomes, and functional neuroimaging in survivors of childhood acute lymphoblastic leukemia” »

Feb 24, 2024

Genetically engineered T cells for cancer immunotherapy

Posted by in categories: biotech/medical, chemistry, computing, genetics, nanotechnology

Relying on sub-wavelength nanostructures, metasurfaces have been shown as promising candidates for replacing conventional free-space optical components by arbitrarily manipulating the amplitude, phase, and polarization of optical wavefronts in certain applications1,2,3. In recent years, the scope of their applications has been expanded towards complete spatio-temporal control through the introduction of active metasurfaces. These developments open up exciting new possibilities for dynamic holography4, faster spatial light modulators5, and fast optical beam steering for LiDAR6. Large efforts have been channeled into various modulation mechanisms7. Microelectromechanical and nanoelectromechanical systems (MEMS and NEMS)8,9,10,11 have the advantages of low-cost and CMOS-compatibility, but the speed is limited up to MHz. Phase-change materials12,13,14 have fast, drastic, and non-volatile refractive index change, but lack continuous refractive index tuning and have a limited number of cycles constraining applicability to reconfigurable devices. Through molecule reorientation, liquid crystal can have index modulation over 10%, while under relatively low applied voltages Tunable liquid crystal metasurfaces, U.S. patent number 10,665,953 [Application Number 16/505,687]15. Techniques of liquid crystal integration have also advanced after decades of development. However, the tuning speeds are limited to kHz range16. Thermal-optic effects can induce relatively large refractive index changes17,18, but the speed is inherently limited and the on-chip thermal management can be challenging. The co-integration of transparent conductive oxide and metallic plasmonic structures5,6 has been demonstrated in epsilon-near-zero (ENZ) regime to control the wavefront of reflected light, but the low reflection amplitude induced by the optical loss of the materials and the ENZ regime is unavoidable.

In modern photonics, a multitude of technologies for tunable optics and frequency conversion19,20 are realized with nonlinear materials that have low loss and a strong χ effect, such as lithium niobate21,22, aluminum nitride23, and organic electro-optic (OEO) materials24. Their ultrafast responses make it possible to use RF or millimeter-wave control25. Developments in computational chemistry have also led to artificially engineered organic molecules that have record-high nonlinear coefficients with long-term and high-temperature stability26,27. However, their potential in modifying free-space light has been relatively unexplored until recently. Several OEO material-hybrid designs have demonstrated improved tunability of metasurfaces28,29,30. Utilizing dielectric resonant structures and RF-compatible coplanar waveguides, a free-space silicon-organic modulator has recently accomplished GHz modulation speed31. However, all demonstrations to date require high operating voltages ± 60V, due to low resonance tuning capability (frequency shift / voltage), which hinders their integration with electronic chips.

In this work, we propose combining high-Q metasurfaces based on slot-mode resonances with the unique nano-fabrication techniques enabled by OEO materials, which drastically reduces the operating voltage. The low voltage is mainly achieved from the ability to place the electrodes in close proximity to each other while hosting high-Q modes in between and the large overlap of the optical and RF fields in OEO materials. In the following sections, we first provide the design concepts and considerations for achieving a reduced operating voltage. Next, we numerically demonstrate the advantage of a particular selected mode compared to other supported modes in the structure. Finally, we experimentally realize our concepts and characterize the performance of the electro-optic metasurface.

Feb 23, 2024

The Genetics of Epilepsy

Posted by in categories: biotech/medical, genetics

Our knowledge of the role of genetics in epilepsy is rapidly expanding, and this is enhancing epilepsy diagnosis, prognosis, and treatment. Julie Ziobro, MD, PhD is a pediatric epileptologist and research scientist at C.S. Mott Children’s Hospital. She and genetic counselor, Mallory Wagner, MS, LCGC, discuss some basic principles of genetics, currently available genetic tests, examples of genetic epilepsies, and how genetic test results can impact treatment decisions and prognosis. They also explore the role of genetics in developing precision therapies for epilepsy.

Feb 23, 2024

What is in utero gene editing?

Posted by in categories: bioengineering, biotech/medical, genetics

Recently approved gene therapies offer patients one-time, potentially curative treatments for genetic diseases such as sickle cell anemia and beta thalassemia. But “one-time” miracle solutions can often be multi-month affairs, require millions of dollars, and cause painful side effects. What if that doesn’t have to be the case?

In utero gene editing, or prenatal somatic cell genome editing, envisions treating a fetus diagnosed with a genetic disease before birth, thereby preventing that entire protocol and the onset of symptoms in the first place. It would also challenge the need for the ethically fraught enterprise of embryo editing, as the treatment would only make edits in the DNA of the individual fetus — edits which would not be passed on in a heritable way.

Watch this video to learn more about in utero gene editing, how it works, and why scientists believe it might be an advantageous approach to treating certain genetic diseases.

Feb 23, 2024

Korea University study explores a novel and precise mitochondrial gene editing method

Posted by in categories: bioengineering, biotech/medical, genetics

Gene editing technology could revolutionize the treatment of genetic diseases, including those that affect the mitochondria—cell structures that generate the energy required for the proper functioning of living cells in all individuals. Abnormalities in the mitochondrial DNA (mtDNA) could lead to mitochondrial genetic diseases.

Targeted base editing of mammalian mtDNA is a powerful technology for modeling mitochondrial genetic diseases and developing potential therapies. Programmable deaminases, which consist of a custom DNA-binding protein and a nucleobase deaminase, enable precise mtDNA editing.

There are two types of programmable deaminases for genome editing: cytosine base editors and adenine base editors, such as DddA-derived cytosine base editors (DdCBEs) and transcription activator-like effector (TALE)-linked deaminases (TALEDs). These editors bind to specific DNA sites in the mitochondrial genome and convert bases, resulting in targeted cytosine-to-thymine (C-to-T) or adenine-to-guanine (A-to-G) conversions during DNA replication or repair. However, the current gene editing approaches have many limitations, including thousands of off-target A-to-G edits while using TALEDs.

Page 46 of 504First4344454647484950Last