New in JNeurosci: Researchers identified a new subset of neurons in mice that morphine may interact with to influence behavior. This neuron population could be a promising new opioid addiction treatment target.
▶️
Opioid use disorder constitutes a major health and economic burden, but our limited understanding of the underlying neurobiology impedes better interventions. Alteration in the activity and output of dopamine (DA) neurons in the ventral tegmental area (VTA) contributes to drug effects, but the mechanisms underlying these changes remain relatively unexplored. We used translating ribosome affinity purification and RNA sequencing to identify gene expression changes in mouse VTA DA neurons following chronic morphine exposure. We found that expression of the neuropeptide neuromedin S (Nms) is robustly increased in VTA DA neurons by morphine. Using an NMS-iCre driver line, we confirmed that a subset of VTA neurons express NMS and that chemogenetic modulation of VTA NMS neuron activity altered morphine responses in male and female mice. Specifically, VTA NMS neuronal activation promoted morphine locomotor activity while inhibition reduced morphine locomotor activity and conditioned place preference (CPP). Interestingly, these effects appear specific to morphine, as modulation of VTA NMS activity did not affect cocaine behaviors, consistent with our data that cocaine administration does not increase VTA Nms expression. Chemogenetic manipulation of VTA neurons that express glucagon-like peptide, a transcript also robustly increased in VTA DA neurons by morphine, does not alter morphine-elicited behavior, further highlighting the functional relevance of VTA NMS-expressing neurons. Together, our current data suggest that NMS-expressing neurons represent a novel subset of VTA neurons that may be functionally relevant for morphine responses and support the utility of cell type-specific analyses like TRAP to identify neuronal adaptations underlying substance use disorder.
Significance Statement The opioid epidemic remains prevalent in the U.S., with more than 70% of overdose deaths caused by opioids. The ventral tegmental area (VTA) is responsible for regulating reward behavior. Although drugs of abuse can alter VTA dopaminergic neuron function, the underlying mechanisms have yet to be fully explored. This is partially due to the cellular heterogeneity of the VTA. Here, we identify a novel subset of VTA neurons that express the neuropeptide neuromedin S (NMS). Nms expression is robustly increased by morphine and alteration of VTA NMS neuronal activity is sufficient to alter morphine-elicited behaviors. Our findings are the first to implicate NMS-expressing neurons in drug behavior and thereby improve our understanding of opioid-induced adaptations in the VTA.