Toggle light / dark theme

“This is kind of a nice bookend to 16 years of research,” says Deisseroth, a neuroscientist and bioengineer at Stanford University. “It took years and years for us to sort out how to make it work.”

“The result is described this month in the journal Nature Biotechnology.”

“Optogenetics involves genetically engineering animal brains to express light-sensitive proteins—called opsins—in the membranes of neurons.”


Optogenetics can now control neural circuits at unprecedented depths within living brain tissue without surgery.

A team of researchers at Duke University have developed an imaging technology for tagging structures at a cellular level that overcomes the shortcomings of existing antibody-based techniques. Immunofluorescence imaging is a key part of the cell biologist’s toolbox, in which a fluorescent ‘flare’ attached to an antibody allows them to visualize the presence of specific target proteins in cell or tissue samples. The issue is that this specificity isn’t always 100 percent — sometimes the antibodies bind to other closely related proteins as well, making it difficult to interpret the results.

Duke’s cell biology chair Scott Soderling has led a team that developed Homology-independent Universal Genome Engineering (HiUGE), an innovation that uses gene-editing technology to rise above the shortcomings of traditional commercial antibodies for imaging.

“We had this idea that CRISPR could be a really amazing tool to address the pressing problem of trying to identify and label these hundreds of proteins,” said Soderling.

Summary: Study reveals a new role for serotonin in the development of the human neocortex. Serotonin acts cell-extrinsically as a growth factor for basal progenitors in the developing neocortex. Researchers report placenta-driven serotonin likely contributed to the evolutionary expansion of the neocortex in humans.

Source: Max Planck Society

During human evolution, the size of the brain increased, especially in a particular part called the neocortex. The neocortex enables us to speak, dream and think. In search of the causes underlying neocortex expansion, researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, together with colleagues at the University Hospital Carl Gustav Carus Dresden, previously identified a number of molecular players. These players typically act cell-intrinsically in the so-called basal progenitors, the stem cells in the developing neocortex with a pivotal role in its expansion.

A gene therapy that could restore the fading sight of the elderly is being tested on humans for the first time after positive results in blind mice.

It could be used to treat age-related macular degeneration, a common condition that usually first affects people in their 50s and 60s, scientists said.

It involves a one-time injection of a modified virus into the eye. This viral vector is altered to contain a synthetic gene that produces a protein that plays a critical role in the perception of light.

For the first time, scientists have created pigs, goats and cattle that can serve as viable “surrogate sires,” male animals that produce sperm carrying only the genetic traits of donor animals.

The advance, published in the Proceedings of the National Academy of Sciences on Sept. 14, could speed the spread of desirable characteristics in livestock and improve food production for a growing global population. It also would enable breeders in remote regions better access to genetic material of elite animals from other parts of the world and allow more precision breeding in animals such as goats where using is difficult.

“With this technology, we can get better dissemination of desirable traits and improve the efficiency of food production. This can have a major impact on addressing food insecurity around the world,” said Jon Oatley, a reproductive biologist with WSU’s College of Veterinary Medicine. “If we can tackle this genetically, then that means less water, less feed and fewer antibiotics we have to put into the animals.”

Using the Crispr gene-editing technique that won a recent Nobel Prize, Crispr Therapeutics cleared blood cancers in patients with off-the-shelf immune cells. These so-called CAR-T therapies previously required a patient’s own cells.

In a Wednesday morning announcement, Crispr Therapeutics (ticker: CRSP) said that its gene-editing let doctors use cells from healthy donors—opening up prospects for broadly available, less-expensive use of CAR-T treatment.

In the Phase 1 trial, the lymphoma blood cancer in four of 11 patients responded completely to infusions of T cells whose genes were altered to target the cancer and prevent transplant rejection. Standard treatments had failed all participants. In patients that got higher doses, the complete responses have lasted for months.

An odd lump on Elizabeth Cowles Johnston’s breast prompted a Friday morning call to her primary care physician Rebecca Andrews at UConn Health.

Dr. Andrews quickly fit her in, and upon checking the lump sent her to Dr. Alex Merkulov, Section Head of Women’s Imaging at the Beekley Imaging Center at UConn Health for a mammogram and ultrasound. The following Monday she had a biopsy of her breast and by that Wednesday she had the diagnosis of breast cancer.

“It was all very quick,” says Johnston.