A team of researchers from Stowers Institute for Medical Research, Howard Hughes Medical Institute and Stanford University has discovered conserved regeneration-responsive enhancers linked to tail regeneration in fish common to two species. In their paper published the journal Science, the group describes their genetic study of two fish species and what they learned about the role of conserved regeneration-responsive enhancers in allowing the fish to regenerate tail parts.
As the researchers note, some species are able to regenerate parts of their body when they are lost. For instance, lizards can regrow lost tails, while many other animals, including most mammals, cannot regrow damaged body parts. Despite much research, scientist have not been able to explain this. In this new effort, the researchers have found what they believe to be a major clue—conserved regeneration-responsive enhancers.
Prior research has shown that DNA sequences include non-coding bits called enhancers, which, as their name implies, play a role in enhancing gene activity. In this new effort, the researchers wondered if there might be certain enhancers involved in the regeneration response in fish—in this case, African killifish and zebrafish. They noted that prior research had shown that the two species split from the same genetic branch approximately 230 million years ago—a short enough period to allow them to see changes to their DNA that allowed both to regenerate the ends of their tails if they were bitten off by predators—or cut off by researchers.
Since antiquity, cultures on nearly every continent have discovered that certain plant leaves, when chewed or brewed or rubbed on the body, could relieve diverse ailments, inspire hallucinations or, in higher dosages, even cause death. Today, pharmaceutical companies import these once-rare plants from specialized farms and extract their active chemical compounds to make drugs like scopolamine for relieving motion sickness and postoperative nausea, and atropine, to curb the drooling associated with Parkinson’s disease or help maintain cardiac function when intubating COVID-19 patients and placing them on ventilators.
Now, Stanford engineers are recreating these ancient remedies in a thoroughly modern way by genetically reprogramming the cellular machinery of a special strain of yeast, effectively transforming them into microscopic factories that convert sugars and amino acids into these folkloric drugs, in much the same way that brewers’ yeast can naturally convert sugars into alcohol.
A new application of the CRISPR/Cas molecular scissors promises major progress in crop cultivation. At Karlsruhe Institute of Technology (KIT), researchers from the team of molecular biologist Holger Puchta have succeeded in modifying the sequence of genes on a chromosome using CRISPR/Cas. For the first time worldwide, they took a known chromosome modification in the thale cress model plant and demonstrated how inversions of the gene sequence can be undone and inheritance can thus be controlled specifically. The results are published in Nature Communications.
About 5,000 years ago, genetic information of thale cress was modified. To date, it has spread widely and is of major interest to science. On the chromosome 4 of the plant, a so-called inversion occurred: The chromosome broke at two points and was reassembled again. The broken out section was reinserted, but rotated by 180°. As a result, the sequence of genes on this chromosome section was inverted. This chromosome mutation known as “Knob hk4S” in research is an example of the fact that evolution cannot only modify the genetic material of organisms, but determine it for a long term. “In inverted sections, genes cannot be exchanged between homologous chromosomes during inheritance,” molecular biologist Holger Puchta, KIT, explains.
MINNEAPOLIS — A new study is sounding the alarm for patients taking dozens of common prescription and over-the-counter drugs. Researchers find that taking a particular class of drug, anticholinergics, increases the risk of developing mild thinking and memory problems.
The study shows there are about 100 of these types of drugs in widespread use. These medications treat everything from colds to high blood pressure to depression.
The research, published in the journal Neurology, finds that people with genetic risk factors for Alzheimer’s disease are particularly susceptible to these issues. Overall, scientists reveal patients with no cognitive issues are 47 percent more likely to develop a mental impairment if they’re taking at least one anticholinergic drug.
“Hotspots” of Coronavirus Infections in Human Bodies
An infection with the coronavirus SARS-CoV-2 can affect multiple organs. With this in mind, researchers of the German Center for Neurodegenerative Diseases (DZNE) and Cornell University in the US have investigated cellular factors that could be significant for an infection. To this end, they analyzed the activity of 28 specific genes in a wide range of human tissues. Their findings, which provide a map of potentially disease-relevant factors across the human body, are published in the journal Cell Reports.
“SARS-CoV-2 not just infects the respiratory system, it has the potential to affect many other organs in the body. Even if the virus infects the respiratory system first, it is essential to be able to predict where it might go next. This aids to develop therapies. Our goal was thus to learn more about what makes the different organs susceptible to infection,” explained Dr. Vikas Bansal, a data scientist at the DZNE’s Tuebingen site. “Therefore, we looked at different tissues to see which components of the cellular machinery might be relevant for infection and also which cell types appear to be particularly susceptible.” Bansal co-authored the current paper with Manvendra Singh, a Cornell presidential fellow, and with Cedric Feschotte, professor in the Department of Molecular Biology and Genetics at Cornell University.
What’s the risk of different human populations to develop a disease? To find out, a team led by Université de Montréal professor Guillaume Lettre created an international consortium to study the blood of hundreds of thousands of people worldwide.
In one of the largest studies of its kind, published today in Cell, close to 750,000 participants from five major populations—European, African, Hispanic, East Asian and South Asian—were tested to see the effect of genetic mutations on characteristics in their blood.
These characteristics include such things as hemoglobin concentration and platelet counts.
Scientists have developed the most accurate computing method to date to reconstruct the patchwork of genetic faults within tumors and their history during disease development, in new research funded by Cancer Research UK and published in Nature Genetics.
Their powerful approach combines artificial intelligence with the mathematical models of Charles Darwin’s theory of evolution to analyze genetic data more accurately than ever before, paving the way for a fundamental shift in how cancer’s genetic diversity is used to deliver tailored treatments to patients.
Applying these new algorithms to DNA data taken from patient samples revealed that tumors had a simpler genetic structure than previously thought. The algorithms showed that tumors had fewer distinct subpopulations of cells, called “subclones,” than previously suggested. The scientists, based at The Institute of Cancer Research, London, and Queen Mary University of London, could also tell how old each subclone was and how fast it was growing.
Electrons may have some type of extremely rudimentary mind.
While there are many versions of panpsychism, the version I find appealing is known as constitutive panpsychism. It states, to put it simply, that all matter has some associated mind or consciousness, and vice versa. Where there is mind there is matter and where there is matter there is mind. They go together. As modern panpsychists like Alfred North Whitehead, David Ray Griffin, Galen Strawson, and others have argued, all matter has some capacity for feeling, albeit highly rudimentary feeling in most configurations of matter.
Panpsychists look at the many rungs on the complexity ladder of nature and see no obvious line between mind and no-mind. Philosopher Thomas Nagel famously asked in 1974 what is it like to be a bat, to echolocate and fly? We can’t know with any certainty, but we can reasonably infer, based on observation of their complex behaviors and the close genetic kinship between all mammals and humans—and the fact that evolution proceeds incrementally—that bats have a rich inner life. By the same logic, we can look steadily at less-complex forms of behavior that allow us to reasonably infer some kind of mind associated with all types of matter. Yes, including even the lowly electron.
There is currently no vaccine or cure towards COVID-19. It is predicted the development of a safe and effective vaccine to prevent COVID-19 will take 12 to 18 months, by which time hundreds of thousands to millions of people may have been infected. With a rapidly growing number of cases and deaths around the world, this emerging threat requires a nimble and targeted means of protection.
Could CRISPR be the next virus killer? To address this global pandemic challenge, we are developing a genetic vaccine that can be used rapidly in healthy and patients to greatly reduce the coronavirus spreading. We developed a safe and effective CRISPR system to precisely target, cut and destroy COVID-19 virus and its genome, which stops coronavirus from infecting the human lung.
We’ve shown that the CRISPR system can reduce 90% of coronavirus load in human cells. It can also protect humans against essentially 90% of all current and emerging coronaviruses. The project is ongoing, and we are working around the clock towards getting an actual product by combing our CRISPR method with an inhaler-based delivery device.