Menu

Blog

Archive for the ‘genetics’ category: Page 200

Mar 29, 2021

Scientists use lipid nanoparticles to precisely target gene editing to the liver

Posted by in categories: bioengineering, biotech/medical, genetics, nanotechnology

The genome editing technology CRISPR has emerged as a powerful new tool that can change the way we treat disease. The challenge when altering the genetics of our cells, however, is how to do it safely, effectively, and specifically targeted to the gene, tissue and organ that needs treatment. Scientists at Tufts University and the Broad Institute of Harvard and MIT have developed unique nanoparticles comprised of lipids—fat molecules—that can package and deliver gene editing machinery specifically to the liver. In a study published today in the Proceedings of the National Academy of Sciences, they have shown that they can use the lipid nanoparticles (LNPs) to efficiently deliver the CRISPR machinery into the liver of mice, resulting in specific genome editing and the reduction of blood cholesterol levels by as much as 57%—a reduction that can last for at least several months with just one shot.

The problem of high cholesterol plagues more than 29 million Americans, according to the Centers for Disease Control and Prevention. The condition is complex and can originate from multiple as well as nutritional and lifestyle choices, so it is not easy to treat. The Tufts and Broad researchers, however, have modified one gene that could provide a protective effect against elevated cholesterol if it can be shut down by gene editing.

The gene that the researchers focused on codes for the angiopoietin-like 3 enzyme (Angptl3). That enzyme tamps down the activity of other enzymes—lipases—that help break down cholesterol. If researchers can knock out the Angptl3 gene, they can let the lipases do their work and reduce levels of cholesterol in the blood. It turns out that some lucky people have a natural mutation in their Angptl3 gene, leading to consistently low levels of triglycerides and low-density lipoprotein (LDL) cholesterol, commonly called “bad” cholesterol, in their bloodstream without any known clinical downsides.

Mar 29, 2021

Evolution drives autism and other conditions to occur much more frequently in boys

Posted by in categories: biotech/medical, evolution, genetics, health, neuroscience

In autism, male-female imbalance is especially pronounced. Boys are as much as four times more likely to have some form of autism and are also more likely to have severe symptoms.


HAMILTON, ON, March 3, 2021 — Evolutionary forces drive a glaring gender imbalance in the occurrence of many health conditions, including autism, a team of genetics researchers has concluded.

The human genome has evolved to favour the inheritance of very different characteristics in males and females, which in turn makes men more vulnerable to a host of physical and mental health conditions, say the researchers responsible for a new paper published in the Journal of Molecular Evolution.

Continue reading “Evolution drives autism and other conditions to occur much more frequently in boys” »

Mar 29, 2021

Should We Genetically Engineer Carbon-Hungry Trees?

Posted by in categories: genetics, innovation

“If you don’t do both, you’re not going to get very far,” he says. He wants to bring “carbon drawdown” technologies into the conversation with genetically modified trees.

Last year, DeLisi organized a workshop with a team of heavy hitters — Sir Richard Roberts (biochemist, Nobel laureate, and staunch advocate for GMOs), Val Giddings (a geneticist at the Information Technology and Innovation Foundation), and researchers from Oak Ridge National Laboratory — to create solutions, like genetically modifying carbon-hungry trees.

And they are close.

Mar 29, 2021

We Finally Know How Sperm ‘Remember’ And Pass on Non-DNA-Coded Traits to Embryos

Posted by in categories: biotech/medical, genetics

Studies in mammals have shown that the ‘memories’ of various environmental effects – such as diet, weight, and stress – are being passed on from dads to offspring, despite these states not being coded for in the DNA sequences carried by sperm. Now, we have a new explanation for how it’s possible.

The story has much to do with epigenetics. Molecules that attach themselves to DNA can act like on-off switches that control which sections of DNA get used – but until now we haven’t known which of these molecules can carry the settings marked by a father’s life experiences, to be incorporated into an embryo via sperm.

“The big breakthrough with this study is that it has identified a non-DNA-based means by which sperm remember a father’s environment (diet) and transmit that information to the embryo,” said McGill University epigeneticist Sarah Kimmins.

Mar 29, 2021

Sangamo, Sanofi Show Positive Early Data for SCD Gene-Edited Cell Therapy

Posted by in categories: biotech/medical, genetics

An ex vivo gene-edited cell therapy for sickle cell disease (SCD) being developed by Sangamo Therapeutics and Sanofi has generated positive early Phase I/II results in three patients—data that persuaded a committee of the European Medicines Agency (EMA) to support an orphan designation for the drug candidate.

The EMA’s Committee for Orphan Medicinal Products (COMP) has adopted a positive opinion for the orphan designation for BIVV003 (autologous CD34+ hematopoietic stem and progenitor cells transfected with zinc finger nuclease mRNAs SB-mRENH1 and SB-mRENH2) following its meeting of January 19–21— minutes of which were posted this month on the EMA’s website.

COMP based its recommendation on data showing that the first three patients with sickle cell disease ended up “without recurrence of previous SCD symptoms” following treatment with BIVV003 in the Phase I/II PRECIZN-1 trial (NCT03653247).

Mar 29, 2021

Upgrade for CRISPR/Cas: Researchers knock out multiple genes in plants at once

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

Using an improved version of the gene editing tool CRISPR/Cas9, researchers knocked out up to twelve genes in plants in a single blow. Until now, this had only been possible for single or small groups of genes. The approach was developed by researchers at Martin Luther University Halle-Wittenberg (MLU) and the Leibniz Institute of Plant Biochemistry (IPB). The method makes it easier to investigate the interaction of various genes. The study appeared in The Plant Journal.

The inheritance of traits in is rarely as simple and straightforward as Gregor Mendel described. The monk, whose experiments in the 19th century on trait inheritance in peas laid the foundation of genetics, in fact got lucky. “In the traits that Mendel studied, the rule that only one gene determines a specific trait, for example the color of the peas, happened to apply,” says plant geneticist Dr. Johannes Stuttmann from the Institute of Biology at MLU. According to the researcher, things are often much more complicated. Frequently there are different that, through their interaction with one another, result in certain traits or they are partly redundant, in other words they result in the same trait. In this case, when only one of these genes is switched off, the effects are not visible in the plants.

The scientists at MLU and IPB have now developed a way to study this complex phenomenon in a more targeted way by improving CRISPR/Cas9. These gene editing tools can be used to cut the DNA of organisms at specific sites. The team built on the work of biologist Dr. Sylvestre Marillonnet who developed an optimized building block for the CRISPR/Cas9 system at the IPB. “This building block helps to produce significantly more Cas9 enzyme in the plants, which acts as a scissor for the genetic material,” explains Stuttmann. The researchers added up to 24 different guide RNAs which guide the scissor enzyme to the desired locations in the genetic material. Experiments on thale cress (Arabidopsis thaliana) and the wild tobacco plant Nicotiana benthamiana proved that the approach works. Up to eight genes could be switched off simultaneously in the tobacco plants while, in the thale cress, up to twelve genes could be switched off in some cases.

Mar 29, 2021

CRISPR Fixes Rare Mutation for the First Time in a Live Animal

Posted by in categories: bioengineering, biotech/medical, genetics

In the case of DMD caused by a duplication mutation, CRISPR can simply snip away the harmful duplicate gene, which is much simpler than delivering a new gene or replacing the old.


For the first time in a live animal, researchers have successfully reversed a gene mutation, called a “duplication mutation,” by gene editing.

Mar 29, 2021

First known gene transfer from plant to insect identified

Posted by in categories: biotech/medical, chemistry, genetics

“The results were surprising, but convincing, says Yannick Pauchet, a molecular entomologist also at the Max Planck Institute for Chemical Ecology. ” According to the data they provide, horizontal gene transfer is the most parsimonious explanation,” he says.

But how the whitefly managed to swipe a plant gene is unclear. One possibility, says Turlings, is that a virus served as an intermediate, shuttling genetic material from a plant into the whitefly genome.

As researchers s… See More.

Continue reading “First known gene transfer from plant to insect identified” »

Mar 26, 2021

Vein, Eye Scans on Station as Next Crew Nears Launch

Posted by in categories: biological, genetics, health, space

(From left) Expedition 65 crew members Pyotr Dubrov, Oleg Novitskiy and Mark Vande Hei, pose for a photo during Soyuz qualification exams in Moscow.


The Expedition 64 crew continued researching how microgravity affects biology aboard the International Space Station today. The orbital residents also conducted vein and eye checks and prepared for three new crew members due in early April.

NASA Flight Engineer Shannon Walker joined Russian cosmonauts Sergey Ryzhikov and Sergey Kud-Sverchkov for vein and eye scans on Thursday. Japan Aerospace Exploration Agency astronaut Soichi Noguchi led the effort scanning veins in the trio’s neck, clavicle and shoulder areas using the Ultrasound 2 device in the morning. In the afternoon, Noguchi examined Walker’s eyes using the orbiting lab’s optical coherence tomography gear.

Continue reading “Vein, Eye Scans on Station as Next Crew Nears Launch” »

Mar 23, 2021

New Genetic Mutation Discovered in People with Schizophrenia

Posted by in categories: biotech/medical, genetics, neuroscience

The research team, led by Todd Lencz, PhD, with Itsik Pe’er, PhD, Tom Maniatis, PhD, and Erin Flaherty, PhD, of Columbia University, carried out a genetic study identifying a single letter change in the DNA code in the PCDHA3 gene that is associated with schizophrenia. The affected gene makes a type of protein called a protocadherin, which generates a cell surface “barcode” required for neurons to recognize, and communicate with, other neurons. They found that the PCDHA3 variant blocks this normal protocadherin function.

The discovery was made possible by the special genetic characteristics of the samples studied by Lencz’s team—patients with schizophrenia and healthy volunteers drawn from the Ashkenazi Jewish population. The Ashkenazi Jewish population represents an important population for study based on its unique history. Just a few hundred individuals who migrated to Eastern Europe less than 1000 years ago are the ancestors of nearly 10 million Ashkenazi Jews today. This lineage, combined with a tradition of marriage within the community, has resulted in a more uniform genetic background in which to identify disease-related variants.

“In addition to our primary findings regarding PCDHA3 and related genes, we were able— due to the unique characteristics of the Ashkenazi population—to replicate several prior findings in schizophrenia despite relatively small sample sizes,” said Lencz, professor in the Institute of Behavioral Science at the Feinstein Institutes. “In our study, we demonstrated this population represents a smart, cost-effective strategy for identifying disease-related genes. Our findings allow us to zero in on a novel aspect of brain development and function in our quest to develop new treatments for schizophrenia.”