Toggle light / dark theme

Triple-negative breast cancer is a combative cancer type with a highly inflated histological grade that leads to poor theragnostic value. Gene, protein, and receptor-specific targets have shown effective clinical outcomes in patients with TNBC. Cells are frequently exposed to DNA-damaging agents. DNA damage is repaired by multiple pathways; accumulations of mutations occur due to damage to one or more pathways and lead to alterations in normal cellular mechanisms, which lead to development of tumors. Advances in target-specific cancer therapies have shown significant momentum; most treatment options cause off-target toxicity and side effects on healthy tissues.

A natural sugar called mannose is a type of hexose that is abundant in many different types of fruits. Recent studies have demonstrated that mannose has been found to be effective in promoting immune tolerance, suppressing inflammatory diseases, and efficient in suppressing tumors by suppressing glycolysis. However, it is not fully understood how mannose exerts its anticancer activity. Now, a study by Sanford Burnham Prebys and the Osaka International Cancer Institute has shed new light on the anticancer properties of mannose and suggests that mannose could be a helpful secondary treatment for cancer.

The findings are published in eLife in an article titled, “Metabolic clogging of mannose triggers dNTP loss and genomic instability in human cancer cells.”

“Mannose has anticancer activity that inhibits cell proliferation and enhances the efficacy of chemotherapy,” wrote the researchers. “How mannose exerts its anticancer activity, however, remains poorly understood. Here, using genetically engineered human cancer cells that permit the precise control of mannose metabolic flux, we demonstrate that the large influx of mannose exceeding its metabolic capacity induced metabolic remodeling, leading to the generation of slow-cycling cells with limited deoxyribonucleoside triphosphates (dNTPs).”

Amino acids serve as the foundational elements of proteins, vital to the optimal functioning of biological structures. Proteins in all life forms are composed of 20 core amino acids.

<div class=””> <div class=””><br />Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.<br /></div> </div>

For many people, when they hear China and genetic engineering in the same sentence, it is often synonymous with scandal, and gene-edited babies may spring to mind.

And, although it is true that nearly five years ago, researcher He Jiankui infamously claimed he had created the first ever gene-edited babies, before going to prison for three years, China has continued to pour a lot of money into genetic engineering research, and aims to become a global leader in the field.

“The accumulative amount of financing in the gene therapy field in China has exceeded $3.3 billion. Also, according to a Frost & Sullivan study, it is estimated that by 2025, gene therapy will reach a scale of nearly $17.89 billion in China,” said Fiona Gao, founding partner of Chinsiders.

Unraveling the mystery of how catalytic organic polymers first appeared on prebiotic Earth will unlock key understandings in the origin of life.

Researchers from Tohoku University recently discovered a probable setting where the creation of catalytic organic polymers could occur. To make this discovery, they evaporated solutions of amino acids.

<div class=””> <div class=””><br />Amino acids are a set of organic compounds used to build proteins. There are about 500 naturally occurring known amino acids, though only 20 appear in the genetic code. Proteins consist of one or more chains of amino acids called polypeptides. The sequence of the amino acid chain causes the polypeptide to fold into a shape that is biologically active. The amino acid sequences of proteins are encoded in the genes. Nine proteinogenic amino acids are called “essential” for humans because they cannot be produced from other compounds by the human body and so must be taken in as food.<br /></div> </div>

A common theme among parents and family members caring for a child with the rare Batten disease is “love, hope, cure.” While inspiring levels of love and hope are found among these amazing families, a cure has been more elusive. One reason is rooted in the need for more basic research. Although researchers have identified an altered gene underlying Batten disease, they’ve had difficulty pinpointing where and how the gene’s abnormal protein product malfunctions, especially in cells within the nervous system.

Now, this investment in more basic research has paid off. In a paper just published in the journal Nature Communications, an international research team pinpointed where and how a key cellular process breaks down in the nervous system to cause Batten disease, sometimes referred to as CLN3 disease [1]. While there’s still a long way to go in learning exactly how to overcome the cellular malfunction, the findings mark an important step forward toward developing targeted treatments for Batten disease and progress in the quest for a cure.

The research also offers yet another excellent example of how studying rare diseases helps to advance our fundamental understanding of human biology. It shows that helping those touched by Batten disease can shed a brighter light on basic cellular processes that drive other diseases, rare and common.

Some sharks get a new set of teeth every few weeks, while crocodiles can go through thousands of chompers in their long lifetimes. Yet the ability to endlessly replace our pearly whites is something that’s eluded us and nearly all other mammals. By the time our 32 ‘adult’ teeth grow in, that’s as good as it gets.

Now, a Japanese team of scientists is set to trial an experimental drug that would allow humans to grow completely new teeth.

A clinical trial scheduled for July 2024 will initially be for participants with tooth agenesis, a genetic condition that results in the absence of teeth, but the scientists have a view to making the treatment available for general use by as soon as 2030.

Large language models like GPT-4 have taken the world by storm thanks to their astonishing command of natural language. Yet the most significant long-term opportunity for LLMs will entail an entirely different type of language: the language of biology.

One striking theme has emerged from the long march of research progress across biochemistry, molecular biology and genetics over the past century: it turns out that biology is a decipherable, programmable, in some ways even digital system.

DNA encodes the complete genetic instructions for every living organism on earth using just four variables—A (adenine), C (cytosine), G (guanine) and T (thymine). Compare this to modern computing systems, which use two variables—0 and 1—to encode all the world’s digital electronic information. One system is binary and the other is quaternary, but the two have a surprising amount of conceptual overlap; both systems can properly be thought of as digital.