Toggle light / dark theme

Scientists with the Human Pangenome Reference Consortium have made groundbreaking progress in characterizing the fraction of human DNA that varies between individuals. They have assembled genomic sequences of 47 people from around the world into a so-called pangenome in which more than 99 percent of each sequence is rendered with high accuracy.

For two decades, scientists have relied on the human reference genome as a standard to compare against other genetic data. Thanks to this reference genome, it was possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

However, it has always been a flawed tool: 70% of its data came from a single man of predominantly African-European background whose DNA was sequenced during the Human Genome Project. Hence, it can reveal very little about individuals on this planet who are different from each other, creating an inherent bias in biomedical data believed to be responsible for some of the health disparities affecting patients today.

In a major advance, scientists have assembled genomic sequences of 47 people from diverse backgrounds to create a pangenome, which offers a more accurate representation of human genetic diversity than the existing reference genome. This new pangenome will help researchers refine their understanding of the link between genes and diseases, and could ultimately help address health disparities.

For more than 20 years, scientists have relied on the human reference genome, a consensus genetic sequence, as a standard against which to compare other genetic data. Used in countless studies, the reference genome has made it possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

But it has always been a flawed tool. One of its biggest problems is that about 70 percent of its data came from a single man of predominantly African-European background whose DNA.

Eight years after the technology was approved by government authorities, it can be reported that at least one child with DNA from three different people has been born to parents in the United Kingdom.

The announcement isn’t exactly ‘new’ knowledge, but reporters at The Guardian were able to prompt an official confirmation with a freedom of information request.

The University of Newcastle in collaboration with the Newcastle Fertility Center are pioneers in what is known as mitochondrial replacement therapy (MRT), a special form of in vitro fertilization (IVF) designed to prevent severe genetic diseases in future babies.

A new study in Nature hunted down another piece to the aging puzzle. In five species across the evolutionary scale—worms, flies, mice, rats, and humans—the team honed in on a critical molecular process that powers every single cell inside the body and degrades with age.

The process, called transcription, is the first step in turning our genetic material into proteins. Here, DNA letters are reworked into a “messenger” called RNA, which then shuttles the information to other parts of the cell to make proteins.

Scientists have long suspected that transcription may go awry with aging, but the new study offers proof that it doesn’t—with a twist. In all five of the species tested, as the organism grew older the process surprisingly sped up. But like trying to type faster when blindfolded, error rates also shot up.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Green Tea: https://www.ochaandco.com/?ref=conqueraging.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Green Tea: https://www.ochaandco.com/?ref=conqueraging.

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.