Toggle light / dark theme

Please see my new FORBES article:

Thanks and please follow me on Linkedin for more tech and cybersecurity insights.


More remarkably, the advent of artificial intelligence (AI) and machine learning-based computers in the next century may alter how we relate to ourselves.

The digital ecosystem’s networked computer components, which are made possible by machine learning and artificial intelligence, will have a significant impact on practically every sector of the economy. These integrated AI and computing capabilities could pave the way for new frontiers in fields as diverse as genetic engineering, augmented reality, robotics, renewable energy, big data, and more.

Three important verticals in this digital transformation are already being impacted by AI: 1) Healthcare, 2) Cybersecurity, and 3) Communications.

Applying deep learning to large-scale genomic data of species or populations is providing new opportunities to understand the evolutionary forces that drive genetic diversity. This Review introduces common deep learning architectures and provides comprehensive guidelines to implement deep learning models for population genetic inference. The authors also discuss current opportunities and challenges for deep learning in population genetics.

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links:
At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/
Use Code: ConquerAging At Checkout.

Epigenetic Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

Oral Microbiome: https://www.bristlehealth.com/?ref=michaellustgarten.
Enter Code: ConquerAging.

At-Home Blood Testing (SiPhox Health): https://getquantify.io/mlustgarten.

Naked mole rats are rodents that are about the size of a mouse with a key difference, aside from having no fur — they’re extremely long-lived — reaching ages of around 40 years old. For comparison, lab mice live an average of about three and a half years. To explain their extensive lifespans, researchers have sought to pinpoint how naked mole rats evade the onset of age-related diseases like cancer. In doing so, they’ve identified a form of gelatinous substance called hyaluronan, which has anti-inflammatory and anticancer properties. Now, the question of whether the benefits of the naked mole rat’s abundant levels of this form of hyaluronan — called high molecular mass hyaluronic acid (HMM-HA) — can be exported to other species has recently drawn attention.

Published in Nature, Gorbunova and colleagues from the University of Rochester show that genetically modifying mice to harbor an enzyme that produces HMM-HA extends their lifespan. The researchers go on to show that increasing HMM-HA reduces the prevalence of cancer. Additionally, the nmrHAS2 gene improves the healthspan of mice by countering physiological dysfunction, as measured with a frailty score. These findings provide the first evidence that genes from long-lived species can be exported to other species, perhaps conferring benefits to humans one day.

Plants possess the unique ability to completely regenerate from a somatic cell, i.e., an ordinary cell that does not typically participate in reproduction. This process involves the de novo (or new) formation of a shoot apical meristem (SAM) that gives rise to lateral organs, which are key for the plant’s reconstruction.

On a cellular scale, the formation of SAM is meticulously controlled by either positive or negative regulators (genes/protein molecules) that may induce or restrict shoot regeneration, respectively. But which molecules are involved? Are there other regulatory layers that are yet to be uncovered?

To seek answers to the above questions, a research group led by Nara Institute of Science and Technology (NAIST), Japan studied the process in Arabidopsis, a plant commonly used in genetic research.

In this article, the fourth installment of our five-part series on different pathways of aging, we look at the rejuvenation of cells, tissues, and stem cells, a topic that has been gaining increasing popularity thanks to remarkable advancements in the field of epigenetic reprogramming. Recent research suggests that despite the accumulation of molecular damage over time, cells and tissues can indeed undergo rejuvenation. We’ll be exploring key subjects such as Epigenetic reprogramming, PGC1a and GSK3β, Telomerase (TERT), as well as Apoptosis and senescence. Join us on this enlightening journey as we uncover the groundbreaking discoveries that are shaping the future of aging research.

The idea for reprogramming was simple yet beautiful. Children are born young, even though their parents are old, because they have undergone a process of cellular reprogramming that leads to rejuvenation.

In a recent study published in the Journal of Experimental Medicine, researchers investigated whether bone marrow-derived cells with heterozygous loss of Dnmt3a (Dnmt3a+/Δ), the most common genetic alteration in clonal hematopoiesis (CH), contribute to colitis-associated colon cancer (CAC) pathogenesis.

Study: Hematopoietic-specific heterozygous loss of Dnmt3a exacerbates colitis-associated colon cancer. Image Credit: vetpathologist/Shutterstock.com.

That’s why we were struck to see a team of scientists that includes researchers from the name-brand Harvard Medical School and Massachusetts Institute of Technology sounding off about what they say are promising new leads, published this month in the journal Aging.

“We identify six chemical cocktails, which, in less than a week and without compromising cellular identity, restore a youthful genome-wide transcript profile and reverse transcriptomic age,” reads the paper. “Thus, rejuvenation by age reversal can be achieved, not only by genetic, but also chemical means.”

Sounds big, right? The researchers claim they pinpointed six treatments that can reverse aging in cells and turn them into a more “youthful state,” according to a press release from Aging’s publisher, without causing dangerous unregulated cell growth.