Menu

Blog

Archive for the ‘genetics’ category: Page 132

Feb 4, 2023

Exploring the Inner Workings of Human Cells — Database of 200,000 Cell Images Yields New Mathematical Framework

Posted by in categories: biotech/medical, genetics, health, mathematics

Working with hundreds of thousands of high-resolution images, researchers from the Allen Institute for Cell Science, a division of the Allen Institute, put numbers on the internal organization of human cells — a biological concept that has proven incredibly difficult to quantify until now.

The scientists also documented the diverse cell shapes of genetically identical cells grown under similar conditions in their work. Their findings were recently published in the journal Nature.

“The way cells are organized tells us something about their behavior and identity,” said Susanne Rafelski, Ph.D., Deputy Director of the Allen Institute for Cell Science, who led the study along with Senior Scientist Matheus Viana, Ph.D. “What’s been missing from the field, as we all try to understand how cells change in health and disease, is a rigorous way to deal with this kind of organization. We haven’t yet tapped into that information.”

Feb 4, 2023

Gene editing company plans to resurrect the dodo

Posted by in categories: bioengineering, biotech/medical, genetics

Colossal Biosciences, a genetic engineering company focused on de-extincting past species, has announced $150 million in Series B funding, which it plans to use for bringing back the iconic dodo.

The resurrection of several extinct species is predicted to occur within the next five years. One company aiming to make that a reality is Texas-based startup Colossal Biosciences, founded in 2021 by some of the world’s leading experts in genomics. In May 2022, it appeared in the World Economic Forum’s list of Technology Pioneers and it won Genomics Innovation of the Year at the BioTech Breakthrough Awards.

Feb 3, 2023

Scientists Use Exotic DNA To Help Create “Climate-Proof” Crops

Posted by in categories: biotech/medical, food, genetics

The incorporation of exotic DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Feb 2, 2023

Genetic engineering sheds light on ancient evolutionary questions

Posted by in categories: bioengineering, climatology, genetics, sustainability

Cyanobacteria are single-celled organisms that derive energy from light, using photosynthesis to convert atmospheric carbon dioxide (CO2) and liquid water (H2O) into breathable oxygen and the carbon-based molecules like proteins that make up their cells. Cyanobacteria were the first organisms to perform photosynthesis in the history of Earth, and were responsible for flooding the early Earth with oxygen, thus significantly influencing how life evolved.

Geological measurements suggest that the atmosphere of the early Earth—over three billion years ago—was likely rich in CO2, far higher than current levels caused by , meaning that ancient had plenty to “eat.”

But over Earth’s multi-billion-year history, atmospheric CO2 concentrations have decreased, and so to survive, these bacteria needed to evolve new strategies to extract CO2. Modern cyanobacteria thus look quite different from their ancient ancestors, and possess a complex, fragile set of structures called a CO2-concentrating mechanism (CCM) to compensate for lower concentrations of CO2.

Feb 2, 2023

AAV Manufacturing Sees Big Opportunities in Synthetic Biology

Posted by in categories: bioengineering, biotech/medical, chemistry, genetics

My recently published perspective paper has been featured by GEN Genetic Engineering & Biotechnology News!

#biotechnology #genetherapy #syntheticbiology


Synthetic biology has the potential to upend existing paradigms of adeno-associated virus (AAV) production, helping to reduce the high costs of gene therapy and thus make it more accessible, according to a recent paper.

Continue reading “AAV Manufacturing Sees Big Opportunities in Synthetic Biology” »

Feb 1, 2023

How genetically engineered immune cells are beating some cancers

Posted by in categories: biotech/medical, genetics

In some cases, it is now possible to genetically engineer the immune system to banish cancers like T-cell leukaemia that were previously unresponsive to treatments.

Feb 1, 2023

‘De-extinction’ company to bring back extinct dodo bird to life

Posted by in categories: biotech/medical, existential risks, genetics

Aunt_Spray/iStock.

“Having focused on genetic advancements in ancient DNA for my entire career and as the first to fully sequence the Dodo’s genome, I am thrilled to collaborate with Colossal and the people of Mauritius on the de-extinction and eventual re-wilding of the Dodo. I particularly look forward to furthering genetic rescue tools focused on birds and avian conservation,” Shapiro added.

Feb 1, 2023

Concept Eng

Posted by in category: genetics

Aglae has developed a nutritive serum without genetic modification, which allow plants to glow thanks to the dark light. This serum is absorbed by capillary action by the plant and reveals natural veins of petals and leaves.

Order our range of turnkey product, designed to easily reproduce the effect of glowing plants from home.

Jan 31, 2023

New Weapons Against Cancer: Millions of Bacteria Programmed to Kill

Posted by in categories: biotech/medical, genetics

Year 2019 😗


Genetically modified microbes release “nanobodies” that alert the immune system to cancer in mice, scientists report.

Jan 31, 2023

A “Missing Link” — Researchers Shed Light on the Origin of Complex Life Forms

Posted by in categories: biological, genetics

What led to the emergence of complex organisms on Earth? It’s a significant unanswered question in biology. Researchers from Christa Schleper’s team at the University of Vienna and Martin Pilhofer’s team at ETH Zurich have taken a step towards resolving it. The scientists succeeded in cultivating a special archaeon and characterizing it more precisely using microscopic methods.

This member of the Asgard archaea exhibits unique cellular characteristics and may represent an evolutionary “missing link” to more complex life forms such as animals and plants. The study was recently published in the journal Nature.

All life forms on earth are divided into three major domains: eukaryotes, bacteria and archaea. Eukaryotes include the groups of animals, plants and fungi. Their cells are usually much larger and, at first glance, more complex than the cells of bacteria and archaea. The genetic material of eukaryotes, for example, is packaged in a cell nucleus and the cells also have a large number of other compartments. Cell shape and transport within the eukaryotic cell are also based on an extensive cytoskeleton. But how did the evolutionary leap to such complex eukaryotic cells come about?