Toggle light / dark theme

It’s a frustrating fact that whenever you try to improve materials like steel, you end up introducing new weaknesses at the same time. It’s a balancing act between different properties. Now, engineers have developed a new type of “super steel” that defies this trade-off, staying strong while still resisting fractures.

For materials like steel, there are three main properties that need to be balanced – strength, toughness and ductility. The first two might sound like the same thing, but there’s an important difference. Strength describes how much of a load a material can take before it deforms or fails, measured in Pascals of pressure. Toughness, meanwhile, measures how much energy it takes to fracture a material.

For reference, glass has relatively high strength but low toughness, so it’s able to support quite a bit of weight but it doesn’t take much energy to break.

Circa 1990 to current o.o


The Woodward effect, also referred to as a Mach effect, is part of a hypothesis proposed by James F. Woodward in 1990.[1] The hypothesis states that transient mass fluctuations arise in any object that absorbs internal energy while undergoing a proper acceleration. Harnessing this effect could generate a reactionless thrust, which Woodward and others claim to measure in various experiments.[2][3]

Hypothetically, the Woodward effect would allow for field propulsion spacecraft engines that would not have to expel matter. Such a proposed engine is sometimes called a Mach effect thruster (MET) or a Mach Effect Gravitation al Assist (MEGA) drive.[4][5] So far, experimental results have not strongly supported this hypothesis,[6] but experimental research on this effect, and its potential applications, continues.[7]

The Space Studies Institute was selected as part of NASA’s Innovative Advanced Concepts program as a Phase I proposal in April 2017 for Mach Effect research.[8][9][10][11] The year after, NASA awarded a NIAC Phase II grant to the SSI to further develop these propellantless thrusters.[12][13].

Form Energy, which is developing what it calls ultra-low-cost, long-duration energy storage for the grid, has signed a contract with the Minnesota-based Great River Energy to develop a 1 megawatt, 150 megawatt hour pilot project.

The second-largest electric utility in the Minnesota, Great River Energy’s installation in Cambridge, Minn. will be the first commercial deployment of the venture-backed battery technology developer’s long-duration energy storage technology.

From Energy’s battery system is significant for its ability to deliver 1 megawatt of power for 150 hours — a huge leap over the lithium ion batteries currently in use for most grid-scale storage projects. Those battery systems can last for two- to four-hours.

The next flight of the U.S. military’s reusable X-37B spaceplane — scheduled for liftoff May 16 from Cape Canaveral — will carry more experiments into orbit than any of the winged ship’s previous missions, including two payloads for NASA and a small deployable satellite built by Air Force Academy cadets.

Military officials announced new details about the upcoming X-37B mission Wednesday, and confirmed its target launch date of May 16. The Boeing-built spaceplane was mounted on top of a United Launch Alliance Atlas 5 rocket Tuesday inside the Vertical Integration Facility at Cape Canaveral’s Complex 41 launch pad.

The unpiloted spacecraft launches inside a payload shroud on top of a conventional rocket, unfurls a power-generating solar array in orbit to generate electricity, and returns to Earth for a runway landing like NASA’s retired space shuttle.