Toggle light / dark theme

Munich-based residential vanadium redox flow battery start-up VoltStorage has secured another $7 million from investors including the Bayern Kapital subsidiary of the development bank of Bavaria; family investment house Korys; the EU-backed EIT Innoenergy, New Jersey-based venture capital fund and seed investor SOSV and Zurich power company Energie 360.

The firm claims its flow battery system can complete more than 10,000 charge cycles without any effect on capacity and says its electrolyte is a recyclable, non-flammable vanadium solution. VoltStorage’s modular unit reportedly offers a continuous power rating of 1.5 kW and nominal energy of 6.2 kWh. The unit comes with a ten-year warranty.

More than 20 flow battery chemistries, including zinc-bromine, zinc-iron, zinc-cerium and magnesium-vanadium have been studied with vanadium redox the closest to wide commercialization. Vanadium, the dominant cost in the electrolyte, is a metal mined in Russia, China and South Africa although there are reserves in the U.S. and Canada. It is used predominantly as a steel additive. Flow battery manufacturers include Washington-based UET, Montana’s Vizn, California-based Primus, Japan’s Sumitomo, Anglo-Canadian Invinity Energy Systems – formed after the recent merger of California’s Avalon and U.K.-based redT – and Form Energy.

Jeep is known for its capable and impressive SUVs with the Wrangler being its most-popular off-roader, hands down. But today’s SUVs need to be more capable than ever as more and more brands move to fuel efficiency and electrified powertrains. With the highly-anticipated Ford Bronco set to steal customers away from the reigning Wrangler king, Jeep isn’t going to allow that to happen. Enter, the newly electrified Wrangler.

Jeep recently teased a new addition to the Wrangler lineup by way of an electrified powertrain. According to MotorTrend, FCA (Fiat Chrysler Automobiles) shared at its 2020 annual shareholder meeting earlier in the year that Jeep was on track to launch a hybrid powertrain project for its off-roading SUVs, starting with the Wrangler.

Expected to launch in the third quarter of 2020, FCA has been mostly silent about the finer details… until now. In fact, thanks to its recent teaser posted on social media, the world should expect an electrified Wrangler sooner rather than later – the Jeep Wrangler 4xe.

We have created a new architected material, which is both highly deformable and ultra‐resistant to dynamic point loads. The bio-inspired metallic cellular structure (with an internal grid of large ceramic segments) is non-cuttable by an angle grinder and a power drill, and it has only 15% steel density. Our architecture derives its extreme hardness from the local resonance between the embedded ceramics in a flexible cellular matrix and the attacking tool, which produces high-frequency vibrations at the interface. The incomplete consolidation of the ceramic grains during the manufacturing also promoted fragmentation of the ceramic spheres into micron-size particulate matter, which provided an abrasive interface with increasing resistance at higher loading rates. The contrast between the ceramic segments and cellular material was also effective against a waterjet cutter because the convex geometry of the ceramic spheres widened the waterjet and reduced its velocity by two orders of magnitude. Shifting the design paradigm from static resistance to dynamic interactions between the material phases and the applied load could inspire novel, metamorphic materials with pre-programmed mechanisms across different length scales.

At the heart of every white dwarf star—the dense stellar object that remains after a star has burned away its fuel reserve of gases as it nears the end of its life cycle—lies a quantum conundrum: as white dwarfs add mass, they shrink in size, until they become so small and tightly compacted that they cannot sustain themselves, collapsing into a neutron star.

This puzzling relationship between a white dwarf’s mass and size, called the mass-radius relation, was first theorized by Nobel Prize-winning astrophysicist Subrahmanyan Chandrasekhar in the 1930s. Now, a team of Johns Hopkins astrophysicists has developed a method to observe the phenomenon itself using collected by the Sloan Digital Sky Survey and a recent dataset released by the Gaia Space Observatory. The combined datasets provided more than 3,000 white dwarfs for the team to study.

A report of their findings, led by Hopkins senior Vedant Chandra, is now in press in Astrophysical Journal and available online on arXiv.

Interesting.


Audi has announced that it is testing out bidirectional charging technology for electric cars, this would incorporate the electric car into the domestic power grid and could provide additional power to the grid when not in use.

What this would do is make electric vehicles a storage unit for energy to be drawn on by the grid or the owners house when needed, for example when a vehicle was parked overnight or not in use.

A team of researchers from the Institute of Applied Physics of the Russian Academy of Sciences (IAP RAS) has just announced that they managed to calculate how to create matter and antimatter using lasers.

This means that, by focusing high-powered laser pulses, we might soon be able to create matter and antimatter using light.

To break this down a bit, light is made of high-energy photons. When high-energy photons go through strong electric fields, they lose enough radiation that they become gamma rays and create electron-positron pairs, thus creating a new state of matter.

In nature, organisms often support each other in order to gain an advantage. However, this kind of cooperation contradicts the theory of evolution proposed by Charles Darwin: Why would organisms invest valuable resources to help others? Instead, they should rather use them for themselves, in order to win the evolutionary competition with other species. A new study led by Prof. Dr. Christian Kost from the Department of Ecology at Osnabrueck University has now solved this puzzle. The results of the study were published in the scientific journal Current Biology. The research project was performed in collaboration with the Max Planck Institute for Chemical Ecology in Jena.

Interactions between two or more organisms, in which all partners involved gain an advantage, are ubiquitous in nature and have played a key role in the of life on Earth. For example, root bacteria fix nitrogen from the atmosphere, thus making it available to plants. In return, the plant supplies its root bacteria with nutritious sugars. However, it is nevertheless costly for both interaction partners to support each other. For example, the provision of sugar requires energy, which is then not available to the plant anymore. From this results the risk of cheating interaction partners that consume the sugar without providing nitrogen in return.

The research team led by Prof. Dr. Christian Kost used bacteria as a model system to study the evolution of mutual cooperation. At the beginning of the experiment, two bacterial strains could only grow when they provided each other with . Over the course of several generations, however, the initial exchange of metabolic byproducts developed into a real cooperation: both partners increased the production of the exchanged amino acids in order to benefit their respective partner. Even though the increased amino acid production enhanced growth when both partners were present, it was extremely costly when individual bacterial strains had to grow without their partner.

Researchers from Kazan Federal University, Texas A&M University and Institute of Applied Physics (Russian Academy of Sciences) found ways to direct high frequency gamma radiation by means of acoustics.

Their paper describes an optical ‘switch’—a device able to let through or stop quanta by switching the acoustic field. Basically, the mechanism makes iron ‘transparent’ for when needed.

The Mossbauer Spectroscopy Lab of Kazan Federal University showed acoustically induced transparency of a resonant medium for in an experiment. The essence of this phenomenon lies in the transformation of the spectrum of the absorption line into a comb structure consisting of satellite lines spaced from the main line by the frequency of the acoustic field. For the experiment, gamma quanta with an energy of 14.4 keV were used, which are emitted during the decay of the excited state of the iron-57 nucleus.

Remember just 2 years ago when the utility companies that supply electricity to customers in Arizona went into a tizzy over a ballot initiative that would mandate them to get 50% of their electricity from renewable sources by the year 2030? Oh, the weeping and wailing and gnashing of teeth could be heard from sea to shining sea. It was a direct frontal assault on the American way of life. It was so dire, the utilities ponied up $40 million of their own money (actually it was their customers’ money) to defeat it.