Toggle light / dark theme

Researchers at Berkeley Lab have advanced the understanding of magnetic skyrmions by developing techniques to image their 3D structures.

These nanoscale objects show promise for revolutionizing microelectronics through enhanced data storage capabilities and reduced energy consumption.

A difficult-to-describe nanoscale structure called the magnetic skyrmion holds potential for creating advanced microelectronic devices, including those with vast data storage capacities and significantly lower power requirements.

This finding, achieved independently by a team at Pennsylvania State University published in the same journal, holds immense potential for the development of nanophotonic devices.

Manipulating the flow of light in materials at small scales is crucial for creating efficient nanophotonic chips, the building blocks for future optical devices. In the realm of electronics, scientists can control the movement of electrons using magnetic fields.

The Lorentz force, exerted by the magnetic field, dictates the electron’s trajectory. However, this approach is inapplicable to photons – the fundamental particles of light – as they lack an electrical charge.

A team of researchers, led by scientist Lin Zhou of Ames National Laboratory, has made important progress towards understanding the role of surface oxides in improving quantum computing circuits performance. Surface oxides are a primary cause of decoherence, or loss of quantum properties in quantum circuits.

A team led by Prof. Sun Haiding from the University of Science and Technology of China (USTC) developed a vertically integrated micro-scale light-emitting diode (micro-LED) array which was then applied in deep ultraviolet (DUV) maskless photolithography system for the first time. Their study was published in Laser & Photonics Reviews.

For the first time ever, scientists at Paderborn University have used high-performance computing (HPC) at large scales to analyze a quantum photonics experiment. In specific terms, this involved the tomographic reconstruction of experimental data from a quantum detector. This is a device that measures individual photons.

Researchers have developed a new “sandwich” structure material that exhibits the quantum anomalous Hall effect, enabling electrons to travel with almost no resistance at higher temperatures.

This breakthrough could significantly enhance computing power while dramatically reducing energy consumption. The structure is based on a layered approach with bismuth telluride and manganese bismuth telluride, promising faster and more efficient future electronic devices.

Quantum Material Innovations

The two new studies place the sources of ordinary chondrite types into specific asteroid families – and most likely specific asteroids. This work requires painstaking back-tracking of meteoroid trajectories, observations of individual asteroids, and detailed modelling of the orbital evolution of parent bodies.

The study led by Miroslav Brož reports that ordinary chondrites originate from collisions between asteroids larger than 30 kilometres in diameter that occurred less than 30 million years ago.

The Koronis and Massalia asteroid families provide appropriate body sizes and are in a position that leads to material falling to Earth, based on detailed computer modelling. Of these families, asteroids Koronis and Karin are likely the dominant sources of H chondrites. Massalia (L) and Flora (LL) families are by far the main sources of L-and LL-like meteorites.

Finding ways to connect the human body to technology could have broad applications in health and entertainment. A new “electric plastic” could make self-powered wearables, real-time neural interfaces, and medical implants that merge with our bodies a reality.

While there has been significant progress in the development of wearable and implantable technology in recent years, most electronic materials are hard, rigid, and feature toxic metals. A variety of approaches for creating “soft electronics” has emerged, but finding ones that are durable, power-efficient, and easy to manufacture is a significant challenge.

Organic ferroelectric materials are promising because they exhibit spontaneous polarization, which means they have a stable electric field pointing in a particular direction. This polarization can be flipped by applying an external electrical field, allowing them to function like a bit in a conventional computer.