Toggle light / dark theme

Related: Radiation-hardened space electronics enter the multi-core era

The approach mitigates risk and enables easy adoption. The RAD510 computer board will launch in industry-standard 3U form factor and use software compatible with the BAE Systems RAD750 and RAD5545 computer boards.

The RAD510 embedded computing board is for the challenging environment of radiation and extreme temperatures of space. It is built on the BAE Systems RAD750 computer board that has enabled more than 100 satellites.

Researchers suggest a new approach is needed to build LLMs with accurate world models.


LLMs have shown that they can excel at various things – like writing, generating computer programs, and more activities.

This can make it seem like these models are learning some general truths about the world, but the study found out otherwise.

In a study published in Physical Review Letters, researchers at the Center for Computational Quantum Physics (CCQ) at the Flatiron Institute have revealed that the quantum problem they solved, which involved a specific two-dimensional quantum system of flipping magnets, exhibits a behavior known as confinement. This problem explains why they defeated the quantum computer in its own game. Only one-dimensional systems had previously exhibited this behavior in quantum condensed matter physics.

The researchers revealed earlier this year that they had completely surpassed a quantum computer at a task that some believed could only be completed by quantum computers by using a classical computer and complex mathematical models.

According to lead author Joseph Tindall, a research fellow at the CCQ, this surprising discovery is giving researchers a framework for evaluating novel quantum simulations and aiding in their understanding of the boundary between quantum and classical computers’ capabilities.

Dell Technologies expands its computing (HPC) portfolio, offering powerful solutions to help organizations quickly innovate with confidence.

With a range of new offers, Dell delivers technologies and services to help power demanding applications while making HPC capabilities more accessible to businesses.

Dell PowerEdge servers champion advanced modeling and datasets.

Physicists at Rice University and their collaborators have made a discovery that sheds new light on magnetism and electronic interactions in advanced materials, with the potential to transform technologies like quantum computing and high-temperature superconductors.

Led by Zheng Ren and Ming Yi, the research team’s study on iron-tin (FeSn) thin films reshapes scientific understanding of kagome magnets — materials named after an ancient basket-weaving pattern and structured in a unique, latticelike design that can create unusual magnetic and electronic behaviors due to the quantum destructive interference of the electronic wave function.

The findings, published in Nature Communications, reveal that FeSn’s magnetic properties arise from localized electrons, not the mobile electrons scientists previously thought. This discovery challenges existing theories about magnetism in kagome metals in which itinerant electrons were assumed to drive magnetic behavior. By providing a new perspective on magnetism, the research team’s work could guide the development of materials with tailored properties for advanced tech applications such as quantum computing and superconductors.

This complete shell structure results in enhanced stability compared to isotopes with different configurations.

100 Sn is also the heaviest nucleus comprising protons and neutrons in equal numbers — a feature that enhances the contribution of the short-range proton–neutron pairing interaction and strongly influences its decay via the weak interaction,” CERN researchers remarked in a previous study.

“Understanding the nuclear properties in the vicinity of 100 Sn, which has been suggested to be the heaviest doubly magic nucleus with proton number Z (50) equal to neutron number N (50), has been a long-standing challenge for experimental and theoretical nuclear physics,” said the research team in the study.

Optical computing aims to replace electricity with light to achieve faster, energy-saving computing.

Researchers have now developed an optical programmable logic array (PLA) that overcomes key hurdles, running advanced logic operations like Conway’s Game of Life. This breakthrough showcases optical computing’s future potential.

For years, researchers have explored ways to use light for computing, seeking faster speeds and reduced energy consumption compared to conventional electronic systems. Optical computing, which relies on light instead of electricity for calculations, offers promising advantages like high parallelism and efficiency. However, implementing complex logic functions with light has been challenging, limiting its practical applications.