Scientists have unlocked a new way to control ionization, the process where atoms lose electrons, using specially designed light beams
By leveraging optical vortex beams, light that carries angular momentum, they can precisely dictate how electrons break free from atoms. This discovery could reshape imaging technology, enhance particle acceleration, and open doors to advancements in quantum computing.
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.
A curiosity about tiny dots on a germanium wafer with metal films led to the discovery of intricate spiral patterns etched by a chemical reaction. Further experiments revealed that these patterns emerge from chemical reactions interacting with mechanical forces through a deforming catalyst. This breakthrough marks the most significant advance in studying chemical pattern formation since the 1950s. Understanding these complex systems could shed light on natural processes like crack formation in materials and the effects of stress on biological growth.
University of California, Los Angeles doctoral student Yilin Wong noticed tiny dots appearing on one of her samples, which had been accidentally left out overnight. The layered sample consisted of a germanium wafer topped with evaporated metal films in contact with a drop of water. On a whim, she examined the dots under a microscope and couldn’t believe her eyes. Beautiful spiral patterns had been etched into the germanium surface by a chemical reaction.
Wong’s curiosity led her on a journey of discovery, revealing something never seen before: hundreds of nearly identical spiral patterns spontaneously forming on a centimeter-square germanium chip. Even more remarkably, small changes in experimental parameters, such as the thickness of the metal film, produced different patterns, including Archimedean spirals, logarithmic spirals, lotus flower shapes, radially symmetric patterns, and more.
Convergent engagement of neural and computational sciences and technologies are reciprocally enabling rapid developments in current and near-future military and intelligence operations. In this podcast, Prof. James Giordano of Georgetown University will provide an overview of how these scientific and technological fields can be — and are being — leveraged for non-kinetic and kinetic what has become known as cognitive warfare; and will describe key issues in this rapidly evolving operational domain.
James Giordano PhD, is the Pellegrino Center Professor in the Departments of Neurology and Biochemistry; Chief of the Neuroethics Studies Program; Co-director of the Project in Brain Sciences and Global Health Law and Policy; and Chair of the Subprogram in Military Medical Ethics at Georgetown University Medical Center, Washington DC. Professor Giordano is Senior Bioethicist of the Defense Medical Ethics Center, and Adjunct Professor of Psychiatry at the Uniformed Services University of Health Sciences; Distinguished Stockdale Fellow in Science, Technology, and Ethics at the United States Naval Academy; Senior Science Advisory Fellow of the SMA Branch, Joint Staff, Pentagon; Non-resident Fellow of the Simon Center for the Military Ethic at the US Military Academy, West Point; Distinguished Visiting Professor of Biomedical Sciences, Health Promotions, and Ethics at the Coburg University of Applied Sciences, Coburg, GER; Chair Emeritus of the Neuroethics Project of the IEEE Brain Initiative; and serves as Director of the Institute for Biodefense Research, a federally funded Washington DC think tank dedicated to addressing emerging issues at the intersection of science, technology and national defense. He previously served as Donovan Group Senior Fellow, US Special Operations Command; member of the Neuroethics, Legal, and Social Issues Advisory Panel of the Defense Advanced Research Projects Agency (DARPA); and Task Leader of the Working Group on Dual-Use of the EU-Human Brain Project. Prof. Giordano is the author of over 350 peer-reviewed publications, 9 books and 50governmental reports on science, technology, and biosecurity, and is an elected member of the European Academy of Science and Arts, a Fellow of the Royal Society of Medicine (UK), and a Fulbright Professorial Fellow. A former US Naval officer, he was winged as an aerospace physiologist, and served with the US Navy and Marine Corps.
By taking two flakes of special materials that are just one atom thick and twisting them at high angles, researchers at the University of Rochester have unlocked unique optical properties that could be used in quantum computers and other quantum technologies.
Researchers at the University of Liverpool and the University of Southampton have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.
In a study published in the journal Nature, the research team used inexpensive and abundant non-metallic elements, such as chloride ions, to design non-metal organic porous frameworks (N-MOFs).
The new materials offer an alternative to metal-organic frameworks (MOFs), a class of porous, crystalline materials made up of metals connected by organic linker compounds.
Physicists at Washington University have forged ahead in the field of quantum mechanics by creating a new phase of matter known as “time crystals” and the even more advanced “time quasicrystals.”
These groundbreaking materials defy traditional physics by maintaining perpetual motion and could revolutionize quantum computing.
Performing computation using quantum-mechanical phenomena such as superposition and entanglement.
Researchers at the University of Gothenburg have developed a novel Ising machine that utilizes surface acoustic waves as an effective carrier of dense information flow. This approach enables fast, energy-efficient solutions to complex optimization problems, offering a promising alternative to conventional computing methods based on von-Neumann architecture. The findings are published in the journal Communications Physics.
Traditional computers can stumble when tackling combinatorial optimization problems —tasks of scheduling logistic operations, financial portfolio optimization and high frequency trading, optimizing communication channels in complex wireless networks, or predicting how proteins fold among countless structural possibilities.
In these cases, each added node—an additional logistic hub, network user, or molecular bond causes the number of possible configurations to explode exponentially. In contrast to linear or polynomial growth, an exponential increase in the number of possible solutions makes even the most powerful computers and algorithms lack the computational power and memory to evaluate every scenario in search of vanishingly small subsets representing satisfactorily optimal solutions.
The collective motion of bacteria—from stable swirling patterns to chaotic turbulent flows—has intrigued scientists for decades. When a bacterial swarm is confined in small circular space, stable rotating vortices are formed. However, as the radius of this confined space increases, the organized swirling pattern breaks down into a turbulent state.
This transition from ordered to chaotic flow has remained a long-standing mystery. It represents a fundamental question not only in the study of bacterial behavior but also in classical fluid dynamics, where understanding the emergence of turbulence is crucial for both controlling and utilizing complex flows.
In a recent study published in Proceedings of the National Academy of Sciences on March 14, 2025, a research team led by Associate Professor Daiki Nishiguchi from the Institute of Science Tokyo, Japan, has revealed in detail how bacterial swarms transition from organized movement to chaotic flow. Combining large-scale experiments, computer modeling, and mathematical analysis, the team observed and explained previously unknown intermediate states that emerge between order and turbulence.
A new study probing quantum phenomena in neurons as they transmit messages in the brain could provide fresh insight into how our brains function.
In this project, described in the Computational and Structural Biotechnology Journal, theoretical physicist Partha Ghose from the Tagore Centre for Natural Sciences and Philosophy in India, together with theoretical neuroscientist Dimitris Pinotsis from City St George’s, University of London and the MillerLab of MIT, proved that established equations describing the classical physics of brain responses are mathematically equivalent to equations describing quantum mechanics. Ghose and Pinotsis then derived a Schrödinger-like equation specifically for neurons.
Our brains process information via a vast network containing many millions of neurons, which can each send and receive chemical and electrical signals. Information is transmitted by nerve impulses that pass from one neuron to the next, thanks to a flow of ions across the neuron’s cell membrane. This results in an experimentally detectable change in electrical potential difference across the membrane known as the “action potential” or “spike”