Toggle light / dark theme

Scientists create world’s first chip that combines 2D materials with conventional silicon circuitry

For the first time, scientists have created a fully functional memory chip only a few atoms thick and integrated it into conventional chips. This advance could pave the way for more powerful and energy-efficient electronic devices.

Decades of innovation have shrunk the circuits on a computer chip so that, nowadays, engineers can pack billions of tiny components onto a single thumbnail-sized silicon wafer. But are now reaching the physical limits of how small they can go while still performing reliably. The solution is two-dimensional (2D) materials, which are materials that are just a single layer of atoms thick that can be scaled down even further and have superior electronic properties.

However, the problem with 2D materials like graphene up until now has been that only simple chips could be constructed with them, and it wasn’t easy to connect them to traditional processors. Now, in research published in the journal Nature, Chunsen Liu at Fudan University in Shanghai and his colleagues have overcome these hurdles. They successfully combined atomically thin 2D memory cells directly onto a conventional silicon chip, creating the world’s first two-dimensional silicon-based hybrid architecture chip.

Individual electrons trapped and controlled above 1 K, easing cooling limits for quantum computing

Researchers from EeroQ, the quantum computing company pioneering electron-on-helium technology, have published a paper, titled “Sensing and Control of Single Trapped Electrons Above 1 Kelvin,” in Physical Review X that details a significant milestone: the first demonstration of controlling and detecting individual electrons trapped on superfluid helium at temperatures above 1 Kelvin. This work was achieved using on-chip superconducting microwave circuits, a method compatible with existing quantum hardware.

Quantum computers today typically require operation at ultra-low temperatures near 10 millikelvin, creating severe challenges in scaling due to heat dissipation. By showing that individual electrons can be trapped and controlled at temperatures more than 100 times higher (above 1 Kelvin), EeroQ’s results open a new pathway toward larger and more practical quantum processors.

The findings also validate long-standing theoretical predictions that electrons on helium can provide exceptionally pure and long-lived qubits, while reducing the extreme cooling demands that limit other approaches.

Superconductivity distorts crystal lattice of topological quantum materials

Superconductors (materials that conduct electricity without resistance) have fascinated physicists for more than a century. While conventional superconductors are well understood, a new class of materials known as topological superconductors has attracted intense interest in recent years.

These superconductors have been reported to be capable of hosting Majorana quasiparticles, exotic states that could change the field of fault-tolerant quantum computing. Yet many of the fundamental properties of these novel bulk topological superconductors remain relatively unknown, leaving open questions about how their unusual electronic states interact with the underlying .

In a new study conducted by Professor Guo-qing Zheng, along with Kazuaki Matano, S. Takayanagi, K. Ito of Okayama University and Professor H. Nakao of High Energy Accelerator Research Organization (KEK), published in Physical Review Letters on August 22, 2025, the researchers report that the doped topological insulator CuxBi2Se3 undergoes tiny but spontaneous distortions in its crystal lattice as it enters the superconducting state.

New haptic system lets soft objects respond to taps, squeezes and twists

New technology that invites expressive, two-way communication between a person and the soft, flexible object they are holding or wearing has been developed at the University of Bath.

Using this system, a user can tap, twist or pinch a soft object—such as a cushion, an item of clothing or a pliable computer mouse—and the object will respond in a meaningful way, for instance, by changing the TV channel, turning off a light or creating a digital sculpture on a screen.

Crucially, the object also provides (such as a soft click or vibration) to confirm the action, while maintaining its natural softness and flexibility.

Climate-smart housing design helps cities beat the heat

Painting walls in light colors, insulating roofs, choosing medium-sized windows, and aligning buildings to the sun’s path may seem like simple choices. But they could provide powerful defenses against climate change for millions of people in the world’s most vulnerable regions.

That’s the message of a study, appearing in the journal Energy and Buildings, which identifies low-cost, climate-smart design strategies as crucial for future housing in Latin America’s rapidly warming cities.

Researchers used computer simulations to test how various climate-resilient building projects would perform under current and projected climate conditions in five major cities—Rio de Janeiro and São Paulo, in Brazil, Santiago (Chile), Bogotá (Colombia), and Lima (Peru).

/* */