In an interview published Tuesday with The Verge, Zuckerberg said VR, the technology he bet his entire $340 billion company on a year ago, is entering “the trough of disillusionment.” That’s a term folks in the tech industry like to use when excitement around a new technology drastically wanes.
His comments effectively place expectations for the success of the new Meta Quest Pro, which goes on sale Oct. 25, at next to zero. At the same time, Zuckerberg reiterated his belief that the metaverse will be the next iteration of computing after the smartphone — it’s just going to take a long time. Specifically, he told The Verge “it’s not going to be until later this decade” when metaverse gadgets like the Quest Pro will be “fully mature.”
But Meta isn’t selling headsets later this decade. It’s selling them now, and expecting technologists and software developers to invent compelling reasons to buy one.
Summary: Brain cells grown in a petri dish can perform goal-directed tasks, such as learning to play a game of Pong.
Source: Cortical Labs.
A Melbourne-led team has for the first time shown that 800,000 brain cells living in a dish can perform goal-directed tasks – in this case the simple tennis-like computer game, Pong.
From superfast magnetic levitation trains and computer chips to magnetic resonance imaging (MRI) machines and particle accelerators, superconductors are electrifying various aspects of our life. Superconductivity is an interesting property that allows materials to transfer moving charges without any resistance, below a certain critical point. This implies that superconducting materials can transfer electrical energy in a highly efficient manner without loss in the form of heat, unlike many conventional conductors.
Almost two decades ago scientists discovered superconductivity in a new material —magnesium diboride, or MgB2. There has been a resurgence in the of popularity MgB2 due to its low cost, superior superconducting abilities, high critical current density (which means that compared to other materials, MgB2 remains a semiconductor even when larger amounts of electric current is passed through it), and trapped magnetic fields arising from strong pinning of the vortices—which are cylindrical current loops or tubes of magnetic flux that penetrate a superconductor.
The intermetallic MgB2 also allows adjustability of its properties. For instance, the critical current density values (Jc) of MgB2 can be improved by decreasing the grain size and increasing the number of grain boundaries. Such adjustability is not observed in conventional layered superconductors.
In the past few years, a growing number of computer scientists have been exploring the idea of “metaverse,” an internet-based space where people would be able to virtually perform various everyday activities. The general idea is that, using virtual reality (VR) headsets or other technologies, people might be able to attend work meetings, meet friends, shop, attend events, or visit places, all within a 3D virtual environment.
While the metaverse has recently been the topic of much debate, accessing its 3D “virtual environments” often requires the use of expensive gear and devices, which can only be purchased by a relatively small amount of people. This unavoidably limits who might be able to access this virtual space.
Researchers at Beijing Institute of Technology and JD Explore Academy have recently created WOC, a 3D online chatroom that could be accessible to a broader range of people worldwide. To gain access to this chatroom, which was introduced in a paper pre-published on arXiv, users merely need a simple computer webcam or smartphone camera.
Large glutamatergic, somatic synapses mediate temporally precise information transfer. In the ventral nucleus of the lateral lemniscus, an auditory brainstem nucleus, the signal of an excitatory large somatic synapse is sign inverted to generate rapid feedforward inhibition with high temporal acuity at sound onsets, a mechanism involved in the suppression of spurious frequency information. The mechanisms of the synaptically driven input–output functions in the ventral nucleus of the lateral lemniscus are not fully resolved. Here, we show in Mongolian gerbils of both sexes that, for stimulation frequencies up to 200 Hz, the EPSC kinetics together with short-term plasticity allow for faithful transmission with only a small increase in latency. Glutamatergic currents are exclusively mediated by AMPARs and NMDARs. Short-term plasticity is frequency-dependent and composed of an initial facilitation followed by depression. Physiologically relevant output generation is limited by the decrease in synaptic conductance through short-term plasticity (STP). At this endbulb synapse, STP acts as a low pass filter and increases the dynamic range of the conductance dependent input–output relation, while NMDAR signaling slightly increases the sensitivity of the input–output function. Our computational model shows that STP-mediated filtering limits the intensity dependence of the spike output, thus maintaining selectivity to sound transients. Our results highlight the interaction of cellular features that together give rise to the computations in the circuit.
SIGNIFICANCE STATEMENT Auditory information processing in the brainstem is a prerequisite for generating our auditory representation of the environment. Thereby, many processing steps rely on temporally precise filtering. Precise feedforward inhibition is a key motif in auditory brainstem processing and produced through sign inversion at several large somatic excitatory synapses. A particular feature of the ventral nucleus of the lateral lemniscus is to produce temporally precise onset inhibition with little temporal variance independent of sound intensity. Our cell-physiology and modeling data explain how the synaptic characteristics of different current components and their short-term plasticity are tuned to establish sound intensity-invariant onset inhibition that is crucial for filtering out spurious frequency information.
A study led by researchers from the Institute Cajal of Spanish Research Council (CSIC) in Madrid, Spain in collaboration with the Bioengineering Department of George Mason University in Virginia, U.S. has updated one of the world’s largest databases on neuronal types, Hippocampome.org.
The study, which is published in the journal PLOS Biology, represents the most comprehensive mapping performed to date between neural activity recoded in vivo and identified neuron types. This major breakthrough may enable biologically meaningful computer modeling of the full neuronal circuit of the hippocampus, a region of the brain involved in memory function.
Circuits of the mammalian cerebral cortex are made up of two types of neurons: Excitatory neurons, which release a neurotransmitter called glutamate, and inhibitory neurons, which release GABA (gamma-aminobutanoic acid), the main inhibitor of the central nervous system. “A balanced dialogue between the ‘excitatory’ and ‘inhibitory’ activities is critical for brain function. Identifying the contribution from the several types of excitatory and inhibitory cells is essential to better understand brain operation,” explains Liset Menendez de la Prida, the Director of the Laboratorio de Circuitos Neuronales at the Institute Cajal who leads the study at the CSIC.
Asia’s top chip stocks tumbled Tuesday, ensnared in an escalating US-China tech race that has erased more than $240 billion from the sector’s global market value.
Taiwan Semiconductor Manufacturing Co., the world’s largest contract chipmaker, plunged a record 8.3% while Samsung Electronics Co. and Tokyo Electron Ltd. also declined. The selloff spread to the foreign-exchange market as investors tallied up the damage from the sweeping curbs the US is imposing on companies that conduct technology business with China.
In this episode we explore a User Interface Theory of reality. Since the invention of the computer virtual reality theories have been gaining in popularity, often to explain some difficulties around the hard problem of consciousness (See Episode #1 with Sue Blackmore to get a full analysis of the problem of how subjective experiences might emerge out of our brain neurology); but also to explain other non-local anomalies coming out of physics and psychology, like ‘quantum entanglement’ or ‘out of body experiences’. Do check the devoted episodes #4 and #28 respectively on those two phenomena for a full breakdown. As you will hear today the vast majority of cognitive scientists believe consciousness is an emergent phenomena from matter, and that virtual reality theories are science fiction or ‘Woowoo’ and new age. One of this podcasts jobs is to look at some of these Woowoo claims and separate the wheat from the chaff, so the open minded among us can find the threshold beyond which evidence based thinking, no matter how contrary to the consensus can be considered and separated from wishful thinking. So you can imagine my joy when a hugely respected cognitive scientist and User Interface theorist, who can cut through the polemic and orthodoxy with calm, respectful, evidence based argumentation, agreed to come on the show, the one and only Donald D Hoffman.
Hoffman is a full professor of cognitive science at the University of California, Irvine, where he studies consciousness, visual perception and evolutionary psychology using mathematical models and psychophysical experiments. His research subjects include facial attractiveness, the recognition of shape, the perception of motion and colour, the evolution of perception, and the mind-body problem. So he is perfectly placed to comment on how we interpret reality.
Hoffman has received a Distinguished Scientific Award of the American Psychological Association for early career research into visual perception, the Rustum Roy Award of the Chopra Foundation, and the Troland Research Award of the US National Academy of Sciences. So his recognition in the field is clear.
He is also the author of ‘The Case Against Reality’, the content of which we’ll be focusing on today; ‘Visual Intelligence’, and the co-author with Bruce Bennett and Chetan Prakash of ‘Observer Mechanics’.
What we discuss: 00:00 Intro. 05:30 Belief VS questioning. 11:20 Seeing the world for survival VS for knowing reality as it truly is. 13:30 Competing strategies to maximise ‘fitness’ in the evolutionary sense. 15:22 Fitness payoff’s can be calculated as mathematical functions, based on different organisms, states and actions. 17:00 Evolutionary Game Theory computer simulations at UC Irvine. 21:30 The payoff functions that govern evolution do not contain information about the structure of the world. 25:00 The world is NOT as it seems VS The world is NOTHING like it seems. 29:30 Space-time cannot be fundamental. 32:30 Local and non-contextual realism have been proved false. 37:45 A User-Interface network of conscious agents. 41:30 A virtual reality computer analogy. 43:30 Space and time and physical objects are merely a user interface. 49:30 Reductionism is false. 53:30 User Interface theory VS Simulation theory. 56:30 Panpsychists are fundamentally physicalists. 57:30 Making mathematical predictions about conscious agents. 59:30 Like space and time maths are invented metrics, so must we start with consciousness metrics. 01:03:30 Experiences lead to actions, which affect other agent’s conscious experiences. 01:08:00 The notion of truth is deeper than the notion of proof and theory. 01:10:00 Consciousness projects space-time so it can explore infinite possibilities. 01:13:00 ‘Not that which the eye can see, but that whereby the eye can see’, Kena Upanishad. 01:17:30 Is nature written in the language of Maths? 01:27:00 Consciousness is like the living being, and maths is like the bones. 01:34:50 Don Hoffman on Max Tegmark’s ‘Everything that is mathematically possible is real’ 01:48:00 Different analogies for different eras.
Francis Heylighen started his career as yet another physicist with a craving to understand the foundations of the universe – the physical and philosophical laws that make everything tick. But his quest for understanding has led him far beyond the traditional limits of the discipline of physics. Currently he leads the Evolution, Complexity and COgnition group (ECCO) at the Free University of Brussels, a position involving fundamental cybernetics research cutting across almost every discipline. Among the many deep ideas he has pursued in the last few decades, one of the most tantalizing is that of the Global Brain – the notion that the social, computational and communicative matrix increasingly enveloping us as technology develops, may possess a kind of coherent intelligence in itself.
I first became aware of Francis and his work in the mid-1990s via the Principia Cybernetica project – an initiative to pursue the application of cybernetic theory to modern computer systems. Principia Cybernetica began in 1989, as a collaboration between Heylighen, Cliff Joslyn, and the late great Russian physicist, dissident and systems theorist Valentin Turchin. And then 1993, very shortly after Tim Berners-Lee released the HTML/HTTP software framework and thus created the Web, the Principia Cybernetica website went online. For a while after its 1993 launch, Principia Cybernetica was among the largest and most popular sites on the Web. Today the Web is a different kind of place, but Principia Cybernetica remains a unique and popular resource for those seeking deep, radical thinking about the future of technology, mind and society.