Toggle light / dark theme

Explainer: What is a ‘biocomputer’ and organoid intelligence

A new paper has been released that outlines a type of ‘roadmap’ for biocomputers – computers drawing memory and power from human neurons – or brain cells.

The crux of the new work is a term called ‘organoid intelligence’ – this is the idea that a small group of human neurons could begin understanding it’s environment, learn and remember.

But to understand this, we first have to look to what an organoid is and how they are made.

Intel releases software platform for quantum computing developers

OAKLAND, Calif. Feb 28 (Reuters) — Intel Corp (INTC.O) on Tuesday released a software platform for developers to build quantum algorithms that can eventually run on a quantum computer that the chip giant is trying to build.

The platform, called Intel Quantum SDK, would for now allow those algorithms to run on a simulated quantum computing system, said Anne Matsuura, Intel Labs’ head of quantum applications and architecture.

Quantum computing is based on quantum physics and in theory can perform calculations quicker than conventional computers.

Innovative 3D Telemedicine to Help Keep Astronauts Healthy

During almost two-years of the COVID-19 pandemic, the growth of telemedicine and new ways of reaching people has changed and developed. In October 2021, NASA flight surgeon Dr. Josef Schmid, industry partner AEXA Aerospace CEO Fernando De La Pena Llaca, and their teams were the first humans “holoported” from Earth into space.

Using the Microsoft Hololens Kinect camera and a personal computer with custom software from Aexa, ESA (European Space Agency) astronaut Thomas Pesquet had a two-way conversation with live images of Schmid and De La Pena placed in the middle of the International Space Station. This was the first holoportation handshake from Earth in space.


Holoportation is a type of capture technology that allows high-quality 3D models of people to be reconstructed, compressed and transmitted live anywhere in real time.

Augmented reality headset enables users to see hidden objects

It can identify hidden objects with 96 percent accuracy.

MIT scientists have engineered an X-ray vision augmented reality headset that combines computer vision and wireless perception to automatically locate items that are hidden from view.

There is one catch though: the hidden items have to have been labeled with RFID tags.


MIT researchers have built an augmented reality headset that gives the wearer X-ray vision.

The headset combines computer vision and wireless perception to automatically locate a specific item that is hidden from view, perhaps inside a box or under a pile, and then guide the user to retrieve it.

The system utilizes radio frequency (RF) signals, which can pass through common materials like cardboard boxes, plastic containers, or wooden dividers, to find hidden items that have been labeled with RFID tags, which reflect signals sent by an RF antenna.

Computational biology in rare disease research

Rare diseases affect 6–8% of the world’s population and, although we know that small changes in the patient’s DNA are responsible for causing the majority of cases, most people wait several years before they are diagnosed and potentially treated. This hunt for an explanation is extremely distressing for the patients and their families, as well as costing healthcare systems large sums of money for medical investigations and treatments.

Background

Even for the simplest cases, where a single change in a patient’s DNA disrupts a gene and always causes the rare disease, identifying which change in the three billion base pairs in each of our genomes is a huge challenge. Prior to the completion of the human genome in 2003, we did not even know what the normal state of affairs was. Even then, the available sequencing technology limited us to only interrogating small parts of a patient’s genome, directed by intelligent guesswork, with mixed results.

Wireless technique enables quantum computer to send and receive data without generating too much error-causing heat

Heat causes errors in the qubits that are the building blocks of a quantum computer, so quantum systems are typically kept inside refrigerators that keep the temperature just above absolute zero (−459 degrees Fahrenheit).

But quantum computers need to communicate with electronics outside the refrigerator, in a room-temperature environment. The metal cables that connect these electronics bring heat into the refrigerator, which has to work even harder and draw extra power to keep the system cold. Plus, more qubits require more cables, so the size of a quantum system is limited by how much heat the fridge can remove.

To overcome this challenge, an interdisciplinary team of MIT researchers has developed a that enables a quantum computer to send and receive data to and from electronics outside the refrigerator using high-speed .

Google Reaches a Major ‘Milestone’ in Making Quantum Computing Usable

Google scientists said Wednesday they have passed a major milestone in their quest to develop effective quantum computing, with a new study showing they reduced the rate of errors – long an obstacle for the much-hyped technology.

Quantum computing has been touted as a revolutionary advance that uses our growing scientific understanding of the subatomic world to create a machine with powers far beyond those of today’s conventional computers.

However, the technology remains largely theoretical, with many thorny problems still standing in the way – including stubbornly high error rates.

Google hails ‘key milestone’ in quantum computing

Google scientists said Wednesday they have passed a major milestone in their quest to develop effective quantum computing, with a new study showing they reduced the rate of errors—long an obstacle for the much-hyped technology.

Quantum computing has been touted as a revolutionary advance that uses our growing scientific understanding of the subatomic world to create a machine with powers far beyond those of today’s conventional computers.

However the technology remains largely theoretical, with many thorny problems still standing in the way—including stubbornly high error rates.