Toggle light / dark theme

Researchers at MIT have developed a design framework for controlling ultrasound wave propagation in microscale acoustic metamaterials, focusing on the precise positioning of microscale spheres within a lattice.

This approach enables tunable wave velocities and responses, and is applicable in fields like ultrasound imaging and mechanical computing.

Acoustic Metamaterials

In the future we can envision FASQ* machines, Fault-Tolerant Application-Scale Quantum computers that can run a wide variety of useful applications, but that is still a rather distant goal. What term captures the path along the road from NISQ to FASQ? Various terms retaining the ISQ format of NISQ have been proposed[here, here, here], but I would prefer to leave ISQ behind as we move forward, so I’ll speak instead of a megaquop or gigaquop machine and so on meaning one capable of executing a million or a billion quantum operations, but with the understanding that mega means not precisely a million but somewhere in the vicinity of a million.

Naively, a megaquop machine would have an error rate per logical gate of order 10^{-6}, which we don’t expect to achieve anytime soon without using error correction and fault-tolerant operation. Or maybe the logical error rate could be somewhat larger, as we expect to be able to boost the simulable circuit volume using various error mitigation techniques in the megaquop era just as we do in the NISQ era. Importantly, the megaquop machine would be capable of achieving some tasks beyond the reach of classical, NISQ, or analog quantum devices, for example by executing circuits with of order 100 logical qubits and circuit depth of order 10,000.

- John Preskill.

[#excerpt](https://www.facebook.com/hashtag/excerpt?__eep__=6&__cft__[0]=AZXa9ueYXttmfVEwzQ4GVekAZVQop7Zhgkor5jA_vB_hwHN4tj73lg-rThDgKBiPSpLhF7zjAlitfcoy74S8m0I2_VTeMl5LfR2Iy9fAsd5Y9hsrZvFvD0zaYNMgiSqjej22oVy1MJZdG12EXGSwzpMBCIeIJ52AotdeXkKOIklHyEUqwFUxAFf8GQfiarLm4odTgsHClmDYc7kUFL3A6AZ-&__tn__=*NK-R) transcript of his talk at the [#Q2B](https://www.facebook.com/hashtag/q2b?__eep__=6&__cft__[0]=AZXa9ueYXttmfVEwzQ4GVekAZVQop7Zhgkor5jA_vB_hwHN4tj73lg-rThDgKBiPSpLhF7zjAlitfcoy74S8m0I2_VTeMl5LfR2Iy9fAsd5Y9hsrZvFvD0zaYNMgiSqjej22oVy1MJZdG12EXGSwzpMBCIeIJ52AotdeXkKOIklHyEUqwFUxAFf8GQfiarLm4odTgsHClmDYc7kUFL3A6AZ-&__tn__=*NK-R) Conference.


A new quantum processor design features a modular router that allows enhanced qubit connectivity, breaking away from traditional 2D grid constraints.

This approach aims for scalable, fault-tolerant quantum computing that could transform industries by solving problems beyond the reach of classical computers.

Quantum Processor Innovation

With brains that process information almost like a computer, the sea creatures already use tools and can be social. But they need to make a few changes before they can take over the world.

Interim Intel co-CEO Michelle Johnston Holthaus announced that the first engineering samples of hardware manufactured with the company’s 18A semiconductor node have been delivered to customers. Her comments aim to reassure industry observers that Intel’s foundry business remains on track to compete with TSMC’s and Samsung’s 3nm and 2nm nodes starting next year.

At the Barclays Annual Global Technology Conference, Holthaus and co-CEO David Zinsner discussed Intel’s upcoming Panther Lake processors, which will debut the 18A process node upon their expected launch in the second half of 2025. Holthaus revealed that eight foundry customers have powered on ES0 (likely “Engineering Sample 0”) chips built on the 18A node, signaling significant progress compared to six months ago.

Intel released version 1.0 of the 18A process design kit in July, enabling customers to begin developing chips based on the node. In August, the company confirmed that internal samples of Panther Lake and Clearwater Forest processors, built on the 18A node, successfully powered on and booted Windows with satisfactory performance. The statements made at the Barclays event mark the first confirmation of 18A usage outside of Intel.

Win a meteorite💥! Join my email list: http://briankeating.com/yt.

What is time? Is it just a ticking clock, or is it something more profound?

In this thought-provoking episode of Into the Impossible, Stephen Wolfram challenges everything we know about time, offering a revolutionary computational perspective that could forever change how we understand the universe.

Stephen Wolfram is a computer scientist, physicist, and businessman. He is the founder and CEO of Wolfram Research and the creator of Mathematica, Wolfram Alpha, and Wolfram Language. Over the course of 4 decades, he has pioneered the development & application of computational thinking. He has been responsible for many discoveries, inventions & innovations in science, technology, and business.

MIT physicists propose a method to create fractionalized electrons known as non-Abelian anyons in two-dimensional materials, potentially advancing quantum computing by enabling more reliable quantum bits without using magnetic fields.

Their research highlights the potential of molybdenum ditelluride in forming these anyons, promising significant advancements in robust quantum computation.

MIT physicists predict exotic matter for quantum computing.

Scientists have discovered that cosmic filaments, the largest known structures in the universe, are rotating. These massive, twisting filaments of dark matter and galaxies stretch across hundreds of millions of light-years and play a crucial role in channeling matter to galaxy clusters. The finding challenges existing theories, as it was previously believed that rotation could not occur on such large scales. The research was confirmed through both computer simulations and real-world data, and it opens up new questions about how these giant structures acquire their spin.

After reading the article, a Reddit user named Kane gained more than 100 upvotes with this comment: “What if galaxy clusters are like neuron and glial clusters in a brain. And dark matter is basically the equivalent of a synapse. It connects galaxies and matter together and is responsible for sending quantum information back and forth like a signal chain.”