Menu

Blog

Archive for the ‘computing’ category: Page 26

Sep 24, 2024

Samsung is creating the world’s first Petabyte SSD

Posted by in categories: computing, transportation

While most of us are still struggling to find SSDs with greater capacities than 4TB, Samsung is working on creating the world’s first petabyte SSD. At least, that’s their plan. Last year, reports suggested that the company was about a decade away. Now, they seem much closer.

As the world’s largest manufacturer of 3D NAND storage, they’re certainly one of the most likely to do it. Samsung has revealed more information about its planes, and how it’s working to get to that 1,000-layer NAND required for such high capacities.

Samsung has long been a leader in large capacity solid state drives. And while they’re not readily available to the average consumer due to their (still) prohibitively expensive prices, Samsung announced a 16TB SSD way back in 2015.

Sep 23, 2024

Silicon Chip Propels 6G Communications Forward

Posted by in categories: computing, internet

A team of scientists has unlocked the potential of 6G communications with a new polarization multiplexer. Terahertz communications represent the next frontier in wireless technology, promising data transmission rates far exceeding current systems.

By operating at terahertz frequencies, these systems can support unprecedented bandwidth, enabling ultra-fast wireless communication and data transfer. However, one of the significant challenges in terahertz communications is effectively managing and utilizing the available spectrum.

The team has developed the first ultra-wideband integrated terahertz polarization (de)multiplexer implemented on a substrateless silicon base which they have successfully tested in the sub-terahertz J-band (220–330 GHz) for 6G communications and beyond.

Sep 23, 2024

Researchers observe an antiferromagnetic diode effect in even-layered MnBi₂Te₄

Posted by in categories: computing, particle physics

Antiferromagnets are materials in which the magnetic moments of neighboring atoms are aligned in an alternating pattern, resulting in no net macroscopic magnetism. These materials have interesting properties that could be favorable for the development of spintronic and electronic devices.

Sep 23, 2024

Critical Flaw in Microchip ASF Exposes IoT Devices to Remote Code Execution Risk

Posted by in categories: computing, internet

Severe vulnerabilities in Microchip ASF and MediaTek Wi-Fi chipsets expose IoT devices to remote code execution risks. No fix for CVE-2024–7490.

Sep 23, 2024

AMD to Launch Affordable ‘Kraken Point’ Zen 5 Mobile in 2025

Posted by in category: computing

Sep 22, 2024

Three Mile Island reactor to provide power for Microsoft data centers

Posted by in categories: climatology, computing, nuclear energy, sustainability

HARRISBURG, Pa. — The owner of the shuttered Three Mile Island nuclear power plant said Friday that it plans to restart the reactor under a 20-year agreement that calls for tech giant Microsoft to buy the power to supply its data centers with carbon-free energy.

The announcement by Constellation Energy comes five years after its then-parent company, Exelon, shut down the plant, saying it was losing money and that Pennsylvania lawmakers had refused to bail it out.

Continue reading “Three Mile Island reactor to provide power for Microsoft data centers” »

Sep 21, 2024

Bio-inspired wick enhances electronic chip cooling

Posted by in categories: computing, cyborgs, transhumanism

A research team led by Prof. Ye Hong from the University of Science and Technology of China has developed an alumina ceramic bionic wick with finger-like pores inspired by the stomatal array of natural leaves. Their research is published in Langmuir.

As the performance of electronic chips continues to improve, their also increases, posing new challenges for cooling strategies. Loop heat pipes (LHPs) are a compelling cooling solution due to their high heat transfer capability, antigravity heat transfer, and absence of moving parts.

However, the differing requirements for flow resistance and capillary force make designing the structure of the capillary wick within an LHP challenging. Specifically, larger pores are needed for gaseous working fluids to reduce flow resistance, while smaller pores are necessary to provide sufficient capillary force for liquid suction.

Sep 21, 2024

Is the brain a quantum computer?

Posted by in categories: computing, neuroscience, quantum physics

A summary of an argumentative paper by Litt, Eliasmith, Kroon, Weinstein and Thagard.

Sep 20, 2024

DNA Computing Evolves: New System Stores Data, Plays Chess, and Solves Sudoku Puzzles

Posted by in categories: biotech/medical, computing, neuroscience

Last month, a team from North Carolina State University and Johns Hopkins University found a workaround. They embedded DNA molecules, encoding multiple images, into a branched gel-like structure resembling a brain cell.

Dubbed “dendricolloids,” the structures stored DNA files far better than those freeze-dried alone. DNA within dendricolloids can be repeatedly dried and rehydrated over roughly 170 times without damaging stored data. According to one estimate, each DNA strand could last over two million years at normal freezer temperatures.

Unlike previous DNA computers, the data can be erased and replaced like memory on classical computers to solve multiple problems—including a simple chess game and sudoku.

Sep 20, 2024

Scientists create organic ‘molecular computer’

Posted by in categories: computing, neuroscience

Researchers from Japan and the Michigan Technological University have succeeded in building a molecular computer that, more than any previous project of its kind, can replicate the inner mechanisms of the human brain, repairing itself and mimicking the massive parallelism that allows our brains to process information like no silicon-based computer can.

A relatively new technology, molecular electronics is an interdisciplinary pursuit that may very well prove the long-term solution to validate Moore’s law well into the next century. A molecular computer is made of organic molecules instead of silicon. Chips built this way are not only potentially much smaller but also, because of the way they can be networked, able to do things that no other traditional computer, regardless of its speed, can do.

“Modern computers are quite fast, capable of executing trillions of instructions a second, but they can’t match the intelligent performance of our brain,” Michigan Tech physicist Ranjit Pati commented. “Our neurons only fire about a thousand times per second. But I can see you, recognize you, talk with you, and hear someone walking by in the hallway almost instantaneously, a Herculean task for even the fastest computer.”

Page 26 of 864First2324252627282930Last