Toggle light / dark theme

Super-thin semiconductor overcomes trade-off between speed and thermal stability

A team led by academician Huang Ru and Professor Wu Yanqing from the School of Integrated Circuits at Peking University has developed a super-thin, high-performance semiconductor with enhanced heat conductivity, enabled by a silicon carbide (SiC) substrate. The research, published in Nature Electronics under the title “Amorphous indium tin oxide transistors for power amplification above 10 GHz,” marks a significant step forward in next-generation radio-frequency (RF) electronics.

Amorphous oxide semiconductors (AOS) enable low-temperature, large-area, and chip-compatible processing with . However, their inherently low thermal conductivity leads to self-heating effects, which limit top-gate scaling and high-frequency operation in applications such as 5G communications and the Internet of Things. Overcoming this trade-off between speed and thermal stability remains a central challenge.

This breakthrough using a SiC substrate overcomes the trade-off between speed and in AOS, paving the way for low-cost, flexible, and chip-compatible RF electronics. It demonstrates how combining high-frequency design with effective thermal management can deliver both performance and reliability in high-speed devices.

Rewriting the rules of genetics: Study reveals gene boundaries are dynamic, not fixed

Molecular biologists have long believed that the beginning of a gene launched the process of transcription—the process by which a segment of DNA is copied into RNA and then RNA helps make the proteins that cells need to function.

But a new study published in Science by researchers at Boston University and the University of Massachusetts T.H. Chan School of Medicine challenges that understanding, revealing that the beginning and end of genes are not fixed points, but move together—reshaping how cells build proteins and adapt through evolution.

“This work rewrites a textbook idea: the beginning of a gene doesn’t just launch transcription—it helps decide where it stops and what protein you ultimately make,” says Ana Fiszbein, assistant professor of biology and faculty fellow of computing & data sciences, and one of the lead authors of the study.

The playbook for perfect polaritons: Rules for creating quasiparticles that can power optical computers, quantum devices

Light is fast, but travels in long wavelengths and interacts weakly with itself. The particles that make up matter are tiny and interact strongly with each other, but move slowly. Together, the two can combine into a hybrid quasiparticle called a polariton that is part light, part matter.

In a new paper published today in Chem, a team of Columbia chemists has identified how to combine matter and light to get the best of both worlds: polaritons with and fast, wavelike flow. These distinctive behaviors can be used to power and other light-based quantum devices.

“We’ve written a playbook for the ‘perfect’ that will guide our research, and we hope, that of the entire field working on strong light-matter interactions,” said Milan Delor, associate professor of chemistry at Columbia.

Stable ferroaxial states offer a new type of light-controlled non-volatile memory

Ferroic materials such as ferromagnets and ferroelectrics underpin modern data storage, yet face limits: They switch slowly, or suffer from unstable polarization due to depolarizing fields respectively. A new class, ferroaxials, avoids these issues by hosting vortices of dipoles with clockwise or anticlockwise textures, but are hard to control.

Researchers at the Max-Planck-Institute for the Structure and Dynamics of Matter (MPSD) and the University of Oxford now show that bi-stable ferroaxial states can be switched with single flashes of polarized terahertz light. This enables ultrafast, light-controlled and stable switching, a platform for next-generation non-volatile data storage. The work is published in the journal Science.

Modern society relies on , where all information is fundamentally encoded in a of 0s and 1s. Consequently, any physical system capable of reliably switching between two stable states can, in principle, serve as a medium for digital data storage.

Controlling atomic interactions in ultracold gas ‘at the push of a button’

Changing interactions between the smallest particles at the touch of a button: Quantum researchers at RPTU have developed a new tool that makes this possible. The new approach—a temporally oscillating magnetic field—has the potential to significantly expand fundamental knowledge in the field of quantum physics. It also opens completely new perspectives on the development of new materials.

Computer chips, imaging techniques such as imaging, , transistors, and : many milestones in our modern everyday world would not have been possible without the discoveries of quantum physics. What is remarkable is that it was only about a hundred years ago that physicists discovered that the world at the smallest scales cannot be explained by the laws of classical physics.

Atoms and their components, protons, neutrons, and electrons—but also light particles—sometimes exhibit physical behaviors that are unknown in the macroscopic world. To this day, the quantum world therefore holds unclear and surprising phenomena that—once understood and controllable—could revolutionize future technologies.

California physicist and Nobel laureate John Martinis won’t quit on quantum computers

A California physicist and Nobel laureate who laid the foundation for quantum computing isn’t done working.

For the last 40 years, John Martinis has worked—mostly within California—to create the fastest computers ever built.

“It’s kind of my professional dream to do this by the time I’m really too old to retire. I should retire now, but I’m not doing that,” the now 67-year-old said.

Next-generation memory: Tungsten-based SOT-MRAM achieves nanosecond switching and low-power data storage

The ability to reliably switch the direction of magnetic alignment in materials, a process known as magnetization switching, is known to be central to the functioning of most memory devices. One known strategy to achieve entails the creation of a rotational force (i.e., torque) on electron spins via an electric current; a physical effect known as spin-orbit torque (SOT).

Information storage devices that rely on this effect are called spin-orbit torque magnetic random-access memories (SOT-MRAMs). These memory systems have been found to have various notable advantages, such as the ability to retain data even when their is turned off, fast switching compared to other various existing memory solutions and .

Researchers at National Yang Ming Chiao Tung University, the Taiwan Semiconductor Manufacturing Company, the Industrial Technology Research Institute and other institutes recently developed a new SOT-MRAM based on that contain the heavy metal tungsten, which is known for its strong spin-orbit coupling. Their memory device, introduced in a paper published in Nature Electronics, could be fabricated via existing processes for the large-scale production of semiconductors.

A new scalable approach to realize a quantum communication network based on ytterbium-171 atoms

Quantum networks, systems consisting of connected quantum computers, quantum sensors or other quantum devices, hold the potential of enabling faster and safer communications. The establishment of these networks relies on a quantum phenomenon known as entanglement, which entails a link between particles or systems, with the quantum state of one influencing the other even when they are far apart.

The atom-based qubits used to establish so far operate at visible or ultraviolet wavelength, which is not ideal for the transmission of signals over long distances via optical fibers. Converting these signals to telecom-band wavelengths, however, can reduce the efficiency of communication and introduce undesirable signals that can disrupt the link between qubits.

A research team at University of Illinois at Urbana-Champaign, led by Prof. Jacob P. Covey recently realized telecom-band wavelength quantum networking using an array of ytterbium-171 atoms. Their paper, published in Nature Physics, introduces a promising approach to realize high-fidelity entanglement between atoms and optical photons generated directly in the telecommunication band.

Fundamental engineering principles can help identify disease biomarkers more quickly

People often compare the genome to a computer’s program, with the cell using its genetic code to process environmental inputs and produce appropriate responses.

But the machine metaphor can be extended even further to any , and applying established concepts of engineering to biology could revolutionize how scientists make their observations within biology, according to research from University of Michigan.

In a paper published in Proceedings of the National Academy of Sciences, Indika Rajapakse, Ph.D., Joshua Pickard, Ph.D. (now an Eric and Wendy Schmidt Postdoctoral Fellow at the Broad Institute), and their team propose that fundamental principles of and observability can be applied to study that change over time.

Scientists create nanofluidic chip with ‘brain-like’ memory pathways

Scientists at Monash University have created a tiny fluid-based chip that behaves like neural pathways of the brain, potentially opening the door to a new generation of computers.

Roughly the size of a coin, the chip was built from a specially designed metal-organic framework (MOF), and channels ions through tiny pathways, mimicking the on/off switching of electronic transistors in computers.

But unlike conventional computer chips, it can also “remember” previous signals, mimicking the plasticity of neurons in the brain.

/* */