Menu

Blog

Archive for the ‘biotech/medical’ category: Page 889

Sep 27, 2022

Spatiotemporal control of ERK pulse frequency coordinates fate decisions during mammary acinar morphogenesis

Posted by in category: biotech/medical

How do single cells know when and where to proliferate, survive, and die during organ morphogenesis? Ender et al. show how self-organized ERK activity pulses and waves spatiotemporally regulate these fate decisions in a prototype 3D mammary epithelial model.

Sep 27, 2022

Technology produces more than 100 medical microrobots per minute that can be disintegrated in the body

Posted by in categories: 3D printing, biotech/medical, nanotechnology, robotics/AI

Daegu Gyeongbuk Institute of Science & Technology (DGIST, President Yang Kook) Professor Hongsoo Choi’s team of the Department of Robotics and Mechatronics Engineering collaborated with Professor Sung-Won Kim’s team at Seoul St. Mary’s Hospital, Catholic University of Korea, and Professor Bradley J. Nelson’s team at ETH Zurich to develop a technology that produces more than 100 microrobots per minute that can be disintegrated in the body.

Microrobots aiming at minimal invasive targeted precision therapy can be manufactured in various ways. Among them, ultra-fine 3D called two-photon polymerization method, a method that triggers polymerization by intersecting two lasers in synthetic resin, is the most used. This technology can produce a structure with nanometer-level precision. However, a disadvantage exists in that producing one microrobot is time consuming because voxels, the pixels realized by 3D printing, must be cured successively. In addition, the magnetic nanoparticles contained in the robot can block the light path during the two-photon polymerization process. This process result may not be uniform when using magnetic nanoparticles with high concentration.

To overcome the limitations of the existing microrobot manufacturing method, DGIST Professor Hongsoo Choi’s research team developed a method to create microrobots at a high speed of 100 per minute by flowing a mixture of magnetic nanoparticles and gelatin methacrylate, which is biodegradable and can be cured by light, into the microfluidic chip. This is more than 10,000 times faster than using the existing two-photon polymerization method to manufacture microrobots.

Sep 27, 2022

Microrobots for treating neurological diseases through intra-nasal administration

Posted by in categories: biotech/medical, nuclear energy, robotics/AI

The joint research team of Professor Choi Hongsoo at Robotics Engineering, DGIST, a senior researcher Jinyoung Kim from DGIST-ETH Microrobotics Research Center, and the research team of Professor Sung Won Kim at Seoul St. Mary’s Hospital of the Catholic University, made a breakthrough for the improvement of the therapeutic efficacy and safety in stem cell-based treatments.

The team developed a magnetically powered human nuclear transfer (hNTSC)-based and a method of minimally invasive of therapeutic agents into the brain via the intranasal pathway. And they also accomplished transplanting the developed stem cell-based microrobot into brain tissue through the intranasal pathway that bypasses the . The proposed method is superior in efficacy and safety compared to the conventional surgical method and is expected to bring new possibilities of treating various intractable neurological diseases such as Alzheimer’s disease, Parkinson’s disease, and brain tumors, in the future.

The limitation of stem cell therapy is the difficulty in delivering an exact amount of stem to an accurate targeted location deep in the body where the treatment is with high risk. Another limitation is that both efficacy and safety of the treatment are low owing to a large amount of the therapeutic agent loss during delivery, while the cost of the treatment is high. In particular, when delivering stem cells into the brain through blood, the efficiency of cell delivery may decrease owing to the “blood-brain barrier,” which is a unique and specific component of the cerebrovascular network.

Sep 27, 2022

New longevity centre looks at how to reverse ageing and prolong disease-free years

Posted by in categories: biotech/medical, life extension

The NUHS Centre for Healthy Longevity will look for biomarkers of ageing and test ways to slow ageing.

Sep 27, 2022

George Church: Learn from COVID and fast-track therapies that reverse aging

Posted by in categories: bioengineering, biotech/medical, genetics, life extension

All eyes are on the Emerald Isle this week as the Longevity Summit Dublin brings together a host of speakers covering the spectrum of this booming sector. Delegates have been hearing from some of the leading entrepreneurs, companies, investors, and researchers in the field as they address many of the hot-button topics affecting longevity. One of those speakers is the so-called “father of genomics” – Harvard professor of genetics, George Church – who closes the conference later today with a keynote on Gene, cell and organ therapies for de-aging.

Longevity. Technology: In addition to his Harvard professorship, Church heads up synthetic biology at the Wyss Institute, where he oversees development of new tools with applications in regenerative medicine. Much of his focus more recently has been on the development of gene therapies targeting age-related disease, a passion that led him to co-found Rejuvenate Bio, with the goal of creating “full age reversal gene therapies.” We caught up with Church ahead of his Dublin presentation for a brief conversation on longevity.

Dr Church’s name is synonymous with genomic science, and he was a key contributor to the Human Genome Project and technologies including next-generation fluorescent and nanopore sequencing, aimed at understanding genetic contributions to human disease. However, he doesn’t feel that those initiatives did a huge amount to move the aging field forward.

Sep 27, 2022

Scientists develop novel technique to grow meat in the lab using magnetic field

Posted by in categories: bioengineering, biotech/medical, genetics

Scientist from the National University of Singapore (NUS) have found a novel way of growing cell-based meat by zapping animal cells with a magnet. This new technique simplifies the production process of cell-based meat by reducing reliance on animal products, and it is also greener, cleaner, safer and more cost-effective.

Cultured is an alternative to animal farming with advantages such as reducing and the risk of transmitting diseases in animals. However, the current method of producing cultured meat involves using other , which largely defeats the purpose, or drugs to stimulate the growth of the meat.

To cultivate cell-based meat, are fed animal serum—usually fetal bovine serum (FBS), which is a mixture harvested from the blood of fetuses excised from pregnant cows slaughtered in the dairy or meat industries—to help them grow and proliferate. This is a critical, yet cruel and expensive, step in the current cell-based meat production process. Ironically, many of these molecules come from the muscles within the slaughtered animal, but scientists did not know how to stimulate their release in production scale bioreactors. Other methods to promote are using drugs or relying on genetic engineering.

Sep 27, 2022

Tiny sea creature’s genes shed light on evolution of immunity

Posted by in categories: biotech/medical, evolution

How a tiny marine invertebrate distinguishes its own cells from competitors’ bears striking similarities to the human immune system, according to a new study led by University of Pittsburgh School of Medicine researchers.

The findings, published now in Proceedings of the National Academy of Sciences, suggest that the building blocks of our immune system evolved much earlier than previously thought and could help improve understanding of transplant rejection, one day guiding development of new immunotherapies.

“For decades, researchers have wondered whether self-recognition in a marine creature called Hydractinia symbiolongicarpus was akin to the processes that control whether a piece of skin can be successfully grafted from one person to another,” said senior author Matthew Nictora, Ph.D., assistant professor of surgery and immunology at the Thomas E. Starzl Transplantation Institute. “Our study shows for the first time that a special group of proteins called the immunoglobulin superfamily— which are important for adaptive immunity in mammals and other vertebrates—are found in such a distantly-related animal.”

Sep 26, 2022

Can we live longer? And does the answer lie in Physics?

Posted by in categories: biotech/medical, life extension

Physics is not the first scientific discipline that springs to mind at the mention of DNA, but a group of scientists, including John van Noort from the Leiden Institute of Physics (LION) have discovered a new structure of telomeric DNA.

Longevity. Technology: In every cell of our bodies are chromosomes that carry genes that determine our characteristics. At the ends of these chromosomes are telomeres, which protect the genes from damage. Telomeres are rather like aglets, the plastic tips at the end of a shoelace – they protect the DNA from damage and fraying. However, every time a cell divides, the telomeres become shorter, until eventually the Hayflick Limit is reached, the cell can no longer divide and apoptosis – programmed cell death – occurs.

This means that telomeres are sometimes seen as the key to living longer, and the researchers behind this new discovery hope it will help us to better understand aging and age-related diseases.

Sep 26, 2022

Certific and PocDoc collaborate to tackle cardiovascular disease

Posted by in categories: biotech/medical, economics, life extension

Hot on the heels of its €7.4 million raise to accelerate remote medical diagnostics, Certific has announced it is partnering with healthtech startup PocDoc to tackle the world’s biggest killer – cardiovascular disease.

The novel screening will allow patients to remotely monitor blood pressure, BMI and, crucially, quantitative lipid levels through the same user experience. This solution will be rolled out through a number of pilots, in conjunction with the NHS, across the UK, and eventually across Europe and globally.

Longevity. Technology: Heart and circulatory diseases cause a quarter of all deaths in the UK – that’s more than 160,000 deaths each year, or one every three minutes. There are around 7.6 million people living with a heart or circulatory disease in the UK. This costs the country’s National Health Service (NHS) an estimated £7.4 billion per year, with a wider cost to the economy of around £15.8 billion. Early identification of those at highest risk can ensure appropriate treatment, prevent many cases and reduce the strain on the healthcare system.

Sep 26, 2022

New study allows scientists to test therapeutics for rare neurodegenerative disease affecting young children

Posted by in categories: biotech/medical, genetics, neuroscience

For the first time, scientists will be able to test therapeutics for a group of rare neurodegenerative diseases that affect infants and young children, thanks to a new research model created by scientists at the University of Wisconsin-Madison. Their results are published in the Proceedings of the National Academy of Sciences.

Hereditary spastic paraplegias (HSPs) are a group of caused by . They lead tens of thousands of children to develop increased muscle tone in their lower extremities, causing weakness in their legs and ultimately affecting their ability to crawl or walk.

“Kids as early as six months of age that have these start to show signs of disease,” says Anjon Audhya, a professor in the Department of Biomolecular Chemistry at UW-Madison. “Between two and five years of age, these kids become wheelchair-bound, and they unfortunately will never be able to walk.”

Page 889 of 2,731First886887888889890891892893Last