Toggle light / dark theme

The technology can detect disorders up to six months earlier than a doctor.

Researchers are using motion capture artificial intelligence technology that brings characters to life in films like Avatar to track the onset of diseases which affect movement, according to a report by the BBC

Dr Valeria Ricotti, part of the team that is working on the new development, told BBC News that she was “completely blown away by the results”.


Whether we realize it or not, cryptography is the fundamental building block on which our digital lives are based. Without sufficient cryptography and the inherent trust that it engenders, every aspect of the digital human condition we know and rely on today would never have come to fruition much less continue to evolve at its current staggering pace. The internet, digital signatures, critical infrastructure, financial systems and even the remote work that helped the world limp along during the recent global pandemic all rely on one critical assumption – that the current encryption employed today is unbreakable by even the most powerful computers in existence. But what if that assumption was not only challenged but realistically compromised?

This is exactly what happened when Peter Shor proposed his algorithm in 1995, dubbed Shor’s Algorithm. The key to unlocking the encryption on which today’s digital security relies is in finding the prime factors of large integers. While factoring is relatively simple with small integers that have only a few digits, factoring integers that have thousands of digits or more is another matter altogether. Shor proposed a polynomial-time quantum algorithm to solve this factoring problem. I’ll leave it to the more qualified mathematicians to explain the theory behind this algorithm but suffice it to say that when coupled with a quantum computer, Shor’s Algorithm drastically reduces the time it would take to factor these larger integers by multiple orders of magnitude.

Prior to Shor’s Algorithm, for example, the most powerful computer today would take millions of years to find the prime factors of a 2048-bit composite integer. Without Shor’s algorithm, even quantum computers would take such an inordinate amount of time to accomplish the task as to render it unusable by bad actors. With Shor’s Algorithm, this same factoring can potentially be accomplished in a matter of hours.

Didn’t they just have record-breaking profits?

There’s an eerie similarity to the statements tech companies have made about their recent layoffs. Mainly, if the press releases are to be believed, the C-suite of every Big Tech company on Earth — well, with the notable exception of Apple, which has not announced layoffs — figured no one would ever go outside or spend money offline again after the pandemic and their various online businesses would stay just as big as they were during the heights of covid.

I do love a heavily lawyered statement that was clearly written by the public relations department! In fact, these are all so similar that they might as well have come from the same PR person… More.


All of these statements sound suspiciously similar.

More than one-third of UK health experts are not aware of Charles Bonnet syndrome — CBS — a condition which can cause vivid, and sometimes frightening, hallucinations.

A poll of 1,100 health experts — including GPs, doctors and optometrists — found 37 per cent were not aware of CBS.

The condition is not caused by mental health problems or dementia. It is purely due to a loss of sight — 60 per cent or more — which reduces or stops the regular messages from the eye to the brain.

Dr. Nadine Lamberski, D.V.M., Dipl. ACZM, Dipl. ECZM (ZHM), is Chief Conservation and Wildlife Health Officer, at the San Diego Zoo Wildlife Alliance (https://sandiegozoowildlifealliance.org/about-us/key-leaders/nadine-lamberski).

Dr. Lamberski leads a unified team of conservation scientists, researchers, wildlife nutritionists, and wildlife veterinarians, cultivating a strategic approach to conservation efforts. She is aligning San Diego Zoo Wildlife Alliance with other global conservation organizations and developing strategies that safeguard biodiversity so all life can thrive.

Dr. Lamberski joined the San Diego Zoo Safari Park in 2001 as senior veterinarian, following seven years as the senior veterinarian at Riverbanks Zoological Park and Botanical Garden in Columbia, South Carolina. She completed an internship at the University of Tennessee and Zoo Knoxville, followed by a zoological medicine residency at the University of California, Davis.

Dr. Lamberski has focused her career on the health and welfare of zoological species, as well as on the conservation impacts of disease on small or fragmented wildlife populations. She has participated in several field projects, most notably studying black-footed cats in southern.

REHOVOT, ISRAEL—March 17, 2021— To observe how a tiny ball of identical cells on its way to becoming a mammalian embryo first attaches to an awaiting uterine wall and then develops into the nervous system, heart, stomach, and limbs: This has been a highly sought-after grail in the field of embryonic development for nearly 100 years. Now, Prof. Jacob Hanna of the Weizmann Institute of Science and his group have accomplished this feat. The method they created for growing mouse embryos outside the womb during the initial stages after embryo implantation will give researchers an unprecedented tool for understanding the development program encoded in the genes, and may provide detailed insights into birth and developmental defects as well as those involved in embryo implantation. The results were published in Nature.

Prof. Hanna, who is in the Institute’s Department of Molecular Genetics, explains that much of what is currently known about mammalian embryonic development comes through either observing the process in non-mammals, like frogs or fish that lay transparent eggs, or obtaining static images from dissected mouse embryos and adding them together. The idea of growing early-stage embryos outside the uterus has been around since before the 1930s, Prof. Hanna says, but those experiments had limited success and the embryos tended to be abnormal.

Prof. Hanna’s team decided to renew that effort in order to advance the research in his lab, which focuses on the way the development program is enacted in embryonic stem cells. Over seven years, through trial and error, fine-tuning and double-checking, his team came up with a two-step process in which they were able to grow normally developing mouse embryos outside the uterus for six days – around a third of their 20-day gestation period – by which time the embryos have a well-defined body plan and visible organs. “To us, that is the most mysterious and the most interesting part of embryonic development, and we can now observe it and experiment with it in amazing detail,” say Prof. Hanna.

A robot that can shift between solid and liquid states has been filmed escaping from a miniature jail cell with bars too close together to allow it to leave in solid form. The creators claim they were inspired by sea cucumbers’ capacity to alter their tissue stiffness – but the scene is just a little too similar to Robert Patrick liquifying his way through the mental hospital bars for us to believe them. We even see the famous reabsorption of the little bit left behind.

Hard-bodied robots are common, even if they have yet to reach the capacities of science fiction films. Their soft-bodied counterparts can get into tight spaces, but what they can do there is limited, and they are also difficult to control.

A team led by Dr Chengfeng Pan of the Chinese University of Hong Kong has made a robot that can swap states to whichever is most needed, with a video that sums it up. The prison escape may trigger our fears, but robots like these could also provide lifesaving services others cannot.

Novak Djokovic, age 35, sometimes hangs out in a pressurized egg to enrich his blood with oxygen and gives pep talks to glasses of water, hoping to purify them with positive thinking before he drinks them. Tom Brady, 45, evangelizes supposedly age-defying supplements, hydration powders and pliability spheres. LeBron James, 38, is said to spend $1.5 million a year on his body to keep Father Time at bay. While most of their contemporaries have retired, all three of these elite athletes remain marvels of fitness. But in the field of modern health science, they’re amateurs compared to Bryan Johnson.


Middle-aged tech centimillionaire Bryan Johnson and his team of 30 doctors say they have a plan to reboot his body.

We spoke with Dr Morgan Levine 2 years ago concerning the remarkable results that she and a team that included Dr David Sinclair had in restoring vision in mice. In that experiment, published in the journal Nature, older mice had tighter optic nerves crushed causing blindness. Then, using a combination of 3 of the 4 Yamanaka cellular programing factors, they were able to restore the mice’s vision by signally the underlying DNA, rebuilding what had been thought to be permanently damaged cells. This was a remarkable result, as it was restoring a damaged organ, essentially a part of the brain, to its original healthy state. When I spoke to Dr Levine about the next step in her research, she mentioned it may be a more complex organ, such as a mouse liver.

But they went further. In the January issue of Cell, Sinclair published results of their ability to age an entire mouse. That is, to signal the epigenome to cause the underlying mouse DNA to behave as if it were much older. They were also able to do the reverse: to take an older mouse and, by signaling the epigenome, bring its cells and organs to the state of a younger mouse. This is a truly remarkable achievement, and it seems to prove Sinclair’s theory that all of our cells have within them a pristine copy of their DNA, and that aging and the disease associated with aging are the result of miscues from the epigenome. If these miscues can be corrected then the cell can be restored, not to a blank stem cell but to its original condition.