Toggle light / dark theme

Histone proteins provide essential structural support for DNA in chromosomes, acting as spools around which DNA strands wrap. These proteins have been well studied, but most current tools to study gene expression rely on RNA sequencing. Histone RNA is unique in that its structure prevents the RNA molecules from being detected by current methods.

Thus, the expression of histone genes may be significantly underestimated in tumor samples. The researchers hypothesized that the increased proliferation of cancer cells leads to a very elevated expression, or hypertranscription, of histones to meet the added demands of cell replication and division.

To test their hypothesis, the researchers used CUTAC profiling to examine and map RNAPII, which transcribes DNA into precursors of messenger RNA. They studied 36 FFPE samples from patients with meningioma – a common and benign brain tumor – and used a novel computational approach to integrate this data with nearly 1,300 publicly available clinical data samples and corresponding clinical outcomes.

In tumor samples, the RNAPII enzyme signals found on histone genes were reliably able to distinguish between cancer and normal samples.

RNAPII signals on histone genes also correlated with clinical grades in meningiomas, accurately predicting rapid recurrence as well as the tendency of whole-arm chromosome losses. Using this technology on breast tumor FFPE samples from 13 patients with invasive breast cancer also predicted cancer aggressiveness.


Using a new technology and computational method, researchers have uncovered a biomarker capable of accurately predicting outcomes in meningioma brain tumors and breast cancers.

Getting mRNA into the brain could allow scientists to instruct brain cells to produce therapeutic proteins that can help treat or prevent disease by replacing missing proteins, reducing harmful ones, or activating the body’s defenses.

The research team designed and tested a library of lipids to optimize their ability to cross the blood-brain barrier. Through a series of structural and functional analyses, they identified a lead formulation, termed MK16 BLNP, that exhibited significantly higher mRNA delivery efficiency than existing lipid nanoparticles approved by the Food and Drug Administration (FDA). This system takes advantage of natural transport mechanisms within the blood-brain barrier, including caveolae-and γ-secretase-mediated transcytosis, to move nanoparticles across the barrier, say the investigators.

In studies using mouse models of disease, the BLNP platform successfully delivered therapeutic mRNAs to the brain, demonstrating its potential for clinical application.


Scientists have developed a lipid nanoparticle system capable of delivering messenger RNA (mRNA) to the brain via intravenous injection, a challenge that has long been limited by the protective nature of the blood-brain barrier.

The findings, in mouse models and isolated human brain tissue, were published in Nature Materials. They demonstrate the potential of this technology to pave the way for future treatments for a wide range of conditions such as Alzheimer’s disease, amyotrophic lateral sclerosis, brain cancer, and drug addiction.

The blood-brain barrier serves as a protective shield, preventing many substances—including potentially beneficial therapies—from reaching the brain. While previous research introduced a platform for transporting large biomolecules such as proteins and oligonucleotides into the central nervous system, this new study focuses on a different approach: using specially designed lipid nanoparticles to transport mRNA across the barrier.

This innovation, called ALA-CART, helps the immune system better recognize and destroy resistant cancers. The new design not only improves treatment success but also promises fewer side effects.

A Powerful Upgrade to CAR-T Therapy

Researchers at the University of Colorado Anschutz Medical Campus have developed an enhanced version of CAR-T cell therapy designed to improve effectiveness and longevity, particularly against cancer cells that were previously difficult to detect and eliminate.

Sunburns and aging skin are obvious effects of exposure to harmful UV rays, tobacco smoke and other carcinogens. But the effects aren’t just skin deep. Inside the body, DNA is literally being torn apart.

Understanding how the body heals and protects itself from DNA damage is vital for treating genetic disorders and life-threatening diseases such as cancer. But despite numerous studies and medical advances, much about the molecular mechanisms of DNA repair remains a mystery.

For the past several years, researchers at Georgia State University have tapped into the Summit supercomputer at the Department of Energy’s Oak Ridge National Laboratory to study an elaborate molecular pathway called (NER). NER relies on an array of highly dynamic protein complexes to cut out (excise) damaged DNA with surgical precision.

Over the past two years, the U.S. Centers for Disease Control and Prevention (CDC) has issued Travel Health Advisories focused on measles outbreaks.

These advisories highlight where there is an active health risk when people visit the highlighted countries.

On February 21, 2025, the CDC reissued a Level 1, Practice Usual Precautions, alert for 57 countries. This CDC list does not integrate the Region of the Americas, with numerous countries reporting 537 measles outbreaks this year.

A new analysis reveals complex linkages among the United Nations’ (UN’s) 17 Sustainable Development Goals—which include such objectives as gender equality and quality education—and finds that no country is on track to meet all 17 goals by the target year of 2030.

Alberto García-Rodríguez of Universidad Nacional Autónoma de México and colleagues present these findings in the open-access journal PLOS One.

In 2015, UN member countries adopted the Sustainable Development Goals with the aim of achieving “peace and prosperity for people and the planet.” However, setbacks such as the COVID-19 pandemic, , and have slowed progress, and more research is needed to clarify the underlying obstacles so they can be effectively addressed.

For the first time, it has been confirmed that individual neurons represent the concepts we learn, regardless of the context in which they are encountered, challenging previous beliefs.

A study led by Dr. Rodrigo Quian Quiroga, head of the Neural Mechanisms of Perception and Memory Research Group at the Hospital del Mar Research Institute, has provided the first direct evidence of how neurons in the human brain store memories independently of the context in which they are acquired.

Published in Cell Reports.

Sustaining growth in storage and computational needs is increasingly challenging. For over a decade, exponentially more information has been produced year after year while data storage solutions are pressed to keep up. Soon, current solutions will be unable to match new information in need of storage. Computing is on a similar trajectory, with new needs emerging in search and other domains that require more efficient systems. Innovative methods are necessary to ensure the ability to address future demands, and DNA provides an opportunity at the molecular level for ultra-dense, durable, and sustainable solutions in these areas.

In this webinar, join Microsoft researcher Karin Strauss in exploring the role of biotechnology and synthetic DNA in reaching this goal. Although we have yet to achieve scalable, general-purpose molecular computation, there are areas of IT in which a molecular approach shows growing promise. These areas include storage as well as computation.

Learn how molecules, specifically synthetic DNA, can store digital data and perform certain types of special-purpose computation, like large-scale similarity search, by leveraging tools already developed by the biotechnology industry. Starting with some background on DNA and its storage potential, you’ll explore the advantages of using DNA for this application. Then, you’ll get a closer look at an end-to-end system, including encoding, synthesizing, reading, and decoding DNA. We’ll also look at an affordable full-stack digital microfluidics platform for wet lab preparations and conclude with a discussion of future hybrid systems.

Together, you’ll explore:

■ The intersection between technology and science of DNA data storage and computation.
■ The many advantages for using DNA to store data compared with other methods.
■ A detailed walkthrough of an end-to-end DNA storage system and its stages.
■ How DNA can be used for image similarity search.

A study conducted by researchers from the University of São Paulo sheds light on new discoveries about the mechanisms of oxidative phosphorylation in ATP production. Recent findings highlight the involvement of sodium in mitochondrial respiration.

In an article published in Trends in Biochemical Sciences, Alicia Kowaltowski, a full professor at the University of São Paulo’s Institute of Chemistry (IQ-USP) in Brazil, calls for a “rewriting” of textbooks regarding the location of the electron transport chain in mitochondria and the role of sodium in mitochondrial respiration.

Kowaltowski is also a member of the Research Center for Redox Processes in Biomedicine (Redoxoma), a Research, Innovation, and Dissemination Center (RIDC) funded by FAPESP and based at IQ-USP.

Four minutes. Imagine what you can accomplish in four minutes. Make coffee? Read half an article? Send a few text messages?

For most of us, four minutes pass in a heartbeat. Yet during those same four minutes, a quantum computer recently performed calculations that would have kept a conventional supercomputer busy for 2.6 billion years.

Scientists achieved something magical—compressing billions of years of computation into minutes. Such power shifts our understanding of what’s possible. Quantum computing won’t just change how we process information; it will transform medicine, climate science, materials design, and countless other fields we rely on daily.