Toggle light / dark theme

In 1989, political scientist Francis Fukuyama predicted we were approaching the end of history. He meant that similar liberal democratic values were taking hold in societies around the world. How wrong could he have been? Democracy today is clearly on the decline. Despots and autocrats are on the rise.

You might, however, be thinking Fukuyama was right all along. But in a different way. Perhaps we really are approaching the end of history. As in, game over humanity.

Now there are many ways it could all end. A global pandemic. A giant meteor (something perhaps the dinosaurs would appreciate). Climate catastrophe. But one end that is increasingly talked about is (AI). This is one of those potential disasters that, like climate change, appears to have slowly crept up on us but, many people now fear, might soon take us down.

We evaluated the long-term treatment outcomes and toxicities in patients with clinically localized and locally advanced prostate cancer (PC) who underwent high-dose-rate brachytherapy (HDR-BT) with external beam radiotherapy (EBRT). We retrospectively analyzed 417 patients with PC who underwent HDR-BT with EBRT. The treatment dose was 19-and 13-Gy HDR-BT in two and single fractions, respectively, both combined with external irradiation of 46 Gy in 23 fractions, and hormonal therapy (HT). The median observation period was 7.2 (range, 2.0–17.6) years. The 7-year recurrence-free, PC-specific, and overall survival rates were 93.3%, 99.1%, and 94.8%, respectively, with only six PC mortalities. Multivariable analysis showed that pre-radiotherapy prostate-specific antigen (PSA) of 0.05 ng/mL after neoadjuvant HT was an independent poor prognostic factor of recurrence (HR, 4.44; 95% CI 1.56–12.63; p = 0.005) and overall mortality (HR, 2.20; 95% CI 1.11–4.39; p = 0.025). The 7-year cumulative incidence rate of grade ≥ 2 toxicities in genitourinary and gastrointestinal tracts were 15.7% and 2.0%, respectively. HDR-BT combined with EBRT shows promising disease control and tolerant toxicities for PC. Poor PSA response to neoadjuvant androgen deprivation predicts worse survival measures. These patients may require more intensive multidisciplinary treatment in combination with radiotherapy.

Mirror life, a concept involving synthetic organisms with reversed molecular structures, carries significant risks despite its potential for medical advancements.

Experts warn that mirror bacteria could escape natural biological controls, potentially evolving to exploit resources in ways that disrupt ecosystems and pose unforeseen dangers to the environment and public health.

Mirror Life

Tires and degrading garbage shed tiny pieces of plastic into the air, creating a form of air pollution that UC San Francisco researchers suspect may be causing respiratory and other illnesses.

A review of some 3,000 studies implicates these particles in a variety of serious health problems. These include male and female infertility, and poor lung function. The particles also may contribute to chronic pulmonary inflammation, which can increase the risk of lung cancer.

“These microplastics are basically particulate matter air pollution, and we know this type of air pollution is harmful,” said Tracey J. Woodruff, Ph.D., MPH, a professor of obstetrics, gynecology and at UCSF.

face_with_colon_three A gasoline free future could be used for flying vehicles like cars, spaceships, homes, citywide generators, and really shows a kinda Star Trek and alien like future utopian world free of cancerous gases. It could make the world really clean and it would be perfect for spaceships.


This study reports the creation of a model thermodynamic engine that is fuelled by the energy difference resulting from changing the statistics of a quantum gas from bosonic to fermionic.

Lung cancer is the major cause of cancer death worldwide. Cancer immunotherapy has been introduced as a promising and effective treatment that can improve the immune system’s ability to eliminate cancer cells and help establish immunological memory. Nanoparticles can contribute to the rapidly evolving field of immunotherapy by simultaneously delivering a variety of immunological agents to the target site and tumor microenvironment. Nano drug delivery systems can precisely target biological pathways and be implemented to reprogram or regulate immune responses. Numerous investigations have been conducted to employ different types of nanoparticles for immunotherapy of lung cancer. Nano-based immunotherapy adds a strong tool to the diverse collection of cancer therapies. This review briefly summarizes the remarkable potential opportunities for nanoparticles in lung cancer immunotherapy and its challenges.

Humankind’s quest to defeat cancer continues by developing targeted treatments. Among the frequently used cancer treatments with significant improvements are chemotherapy, radiation therapy, surgery, and combinations of them. However, these strategies have various limitations; for instance, although surgery offers the best outcome for cancers detected at early stages, this approach often falls short for cancers detected at late stages which have already spread throughout the body. Furthermore, chemotherapy has low specificity, drug-induced side effects, and drug resistance, and has shown higher cancer relapse rates similar to radiation therapy (Velpurisiva et al., 2017; Doroudian et al., 2020; Niloy et al., 2021; Anconina et al., 2022; Hosseinkazemi et al., 2022). As a result, researchers were encouraged to make use of the human body’s own defense system as a tool to fight cancer.

Immunotherapy boosts a person’s own immune system to identify and fight cancer cells that normally evade its defenses.

However, like traditional cancer treatments, immunotherapy may cause or exacerbate cognitive decline, especially in older adults. Because this treatment is much newer than chemotherapy or radiation, these potential side effects have not yet been widely studied.

Gee Su Yang, assistant professor at the UConn School of Nursing, has received a $60,000 CRISP (Clinical Research Innovation Seed Program) Award from the Office of the Vice President for Research to conduct a pilot study of how immunotherapy impacts cognitive function in older cancer patients.

Empa researchers are working on artificial muscles that can keep up with the real thing. They have now developed a method of producing the soft and elastic, yet powerful structures using 3D printing. One day, these could be used in medicine or robotics – and anywhere else where things need to move at the touch of a button.


A team of researchers from Empa’s Laboratory for Functional Polymers is working on actuators made of soft materials. Now, for the first time, they have developed a method for producing such complex components using a 3D printer. The so-called dielectric elastic actuators (DEA) consist of two different silicone-based materials: a conductive electrode material and a non-conductive dielectric. These materials interlock in layers. “It’s a bit like interlacing your fingers,” explains Empa researcher Patrick Danner. If an electrical voltage is applied to the electrodes, the actuator contracts like a muscle. When the voltage is switched off, it relaxes to its original position.

3D printing such a structure is not trivial, Danner knows. Despite their very different electrical properties, the two soft materials should behave very similarly during the printing process. They should not mix but must still hold together in the finished actuator. The printed “muscles” must be as soft as possible so that an electrical stimulus can cause the required deformation. Added to this are the requirements that all 3D printable materials must fulfill: They must liquefy under pressure so that they can be extruded out of the printer nozzle. Immediately thereafter, however, they should be viscous enough to retain the printed shape. “These properties are often in direct contradiction,” says Danner. “If you optimize one of them, three others change … usually for the worse.”

Did you know that up to 20% of people with lung cancer have never smoked?

Sherlock-Lung is a comprehensive study that uses genomic approaches to trace the causes of lung cancer among people who have never smoked.


Sherlock Lung is a genomic epidemiologic study of lung cancer in never smokers conducted by researchers in DCEG.