Toggle light / dark theme

Hepatocellular Carcinoma in Mice Affects Neuronal Activity and Glia Cells in the Suprachiasmatic Nucleus

Background: Chronic liver diseases such as hepatic tumors can affect the brain through the liver–brain axis, leading to neurotransmitter dysregulation and behavioral changes. Cancer patients suffer from fatigue, which can be associated with sleep disturbances. Sleep is regulated via two interlocked mechanisms: homeostatic regulation and the circadian system. In mammals, the hypothalamic suprachiasmatic nucleus (SCN) is the key component of the circadian system. It generates circadian rhythms in physiology and behavior and controls their entrainment to the surrounding light/dark cycle. Neuron–glia interactions are crucial for the functional integrity of the SCN. Under pathological conditions, oxidative stress can compromise these interactions and thus circadian timekeeping and entrainment.

Dr. Reynold Panettieri, MD — Novel Therapeutic Approaches To Treat Airways Diseases

Novel Therapeutic Approaches To Treat Airways Diseases — Dr. Reynold Panettieri, MD, — Vice Chancellor for Translational Medicine and Science Director, Rutgers Institute for Translational Medicine and Science / Professor of Medicine, Robert Wood Johnson Medical School.

Single pollen parents in flowering plants may be more common than previously thought

While all seeds produced within a fruit have the same maternal genome, the paternal genomes of seeds can come from the pollen of one or more paternal parents. A common assumption about flowering plants is that the ovules are most often pollinated by multiple paternal parents at the flower level.

Various genomic conflicts can arise during the process of fertilization and in multiseed plants, including conflicts over nutritional resources between the maternal plant and its offspring, conflicts over nutritional resources among developing seeds, between paternal and maternal genomes over seed development and competition among paternal parents. The relationship between these genomic conflicts and single or multiple paternal parentage is unclear.

To shed some light on the prevalence of monogamy and polyandry in flowering plants, a group of researchers in India conducted a systematic literature review of studies from 1984 to 2024 and a of 63 flowering from diverse families. The study was recently published in the Proceedings of the National Academy of Sciences. The number of paternal parents was determined in the context of self-compatible vs. incompatible breeding, seed number, and phylogenetic relationships.

Researchers overcome long-standing bottleneck in single photon detection with twisted 2D materials

The ability to detect single photons (the smallest energy packets constituting electromagnetic radiation) in the infrared range has become a pressing need across numerous fields, from medical imaging and astrophysics to emerging quantum technologies. In observational astronomy, for example, the light from distant celestial objects can be extremely faint and require exceptional sensitivity in the mid-infrared.

Similarly, in free-space quantum communication—where single photons need to travel across vast distances—operating in the mid-infrared can provide key advantages in signal clarity.

The widespread use of single-photon detectors in this range is limited by the need for large, costly, and energy-intensive cryogenic systems to keep the temperature below 1 Kelvin. This also hinders the integration of the resulting detectors into modern photonic circuits, the backbone of today’s information technologies.

New Discovery Rewrites the Rules of Protein Stability and Evolution

A large-scale experiment has uncovered the fundamental rules that govern protein stability, opening the door to more rapid development of drugs and enzymes. Proteins are essential molecular machines that power countless processes in living organisms. They help turn sunlight into energy, support t

Johns Hopkins scientists grow a mini human brain that lights up and connects like the real thing

Scientists at Johns Hopkins have grown a first-of-its-kind organoid mimicking an entire human brain, complete with rudimentary blood vessels and neural activity. This new “multi-region brain organoid” connects different brain parts, producing electrical signals and simulating early brain development. By watching these mini-brains evolve, researchers hope to uncover how conditions like autism or schizophrenia arise, and even test treatments in ways never before possible with animal models.

DNA nanostructures can mimic molecular organization of living systems without chemical cross-linking

Newly developed DNA nanostructures can form flexible, fluid, and stimuli-responsive condensates without relying on chemical cross-linking, report researchers from the Institute of Science Tokyo and Chuo University, in the journal JACS Au.

Owing to a rigid tetrahedral motif that binds the linkers in a specific direction, the resulting string-like structures form condensates with exceptional fluidity and stability. These findings pave the way for adaptive soft materials with potential applications in drug delivery, artificial organelles, and bioengineering platforms.

Within living cells, certain biomolecules can organize themselves into specialized compartments called biomolecular condensates. These droplet-like structures play crucial roles in cellular functions, such as regulating and ; they essentially represent nature’s clever way of organizing cellular activity without the need for rigid membranes.

/* */