This case series study examines the use and outcomes of total neoadjuvant therapy in routine practice for patients with rectal cancer.

Going forward, AI has the potential to help balance needs across regions, ensuring care delivery doesn’t compromise chronic or long-term care in the face of emergencies.
Ethical Considerations And Systemic Impact
While AI holds significant promise in healthcare, its implementation must be approached thoughtfully. Challenges such as bias in training data, lack of interoperability and concerns around patient consent and data privacy (particularly under HIPAA) need to be proactively addressed. Effective deployment of AI requires close collaboration between policymakers, clinicians and technologists to establish standards that ensure equitable and inclusive outcomes.
What if we could prevent people from developing obesity? The World Obesity Federation expects more than half the global population to develop overweight or obesity by 2035. However, treatment strategies such as lifestyle change, surgery and medications are not universally available or effective.
By drawing on genetic data from over five million people, an international team of researchers has created a genetic test called a polygenic risk score (PGS) that predicts adulthood obesity already in early childhood. This finding could help to identify children and adolescents at higher genetic risk of developing obesity, who could benefit from targeted preventative strategies, such as lifestyle interventions, at a younger age.
“What makes the score so powerful is its ability to predict, before the age of five, whether a child is likely to develop obesity in adulthood, well before other risk factors start to shape their weight later in childhood. Intervening at this point can have a huge impact,” says Assistant Professor Roelof Smit from the NNF Center for Basic Metabolic Research (CBMR) at the University of Copenhagen and lead author of the research published in Nature Medicine.
The human gut microbiome has been shown to impact health in a myriad of ways. The type and abundance of different bacteria can impact everything from the immune system to the nervous system. Now, researchers at Stanford University are taking advantage of the microbiome’s potential for fighting disease by genetically modifying certain bacteria to reduce a substance that causes kidney stones. If scientists are successful at modifying gut bacteria, this can lead to therapeutic treatments for a wide range of diseases.
However, the study, published in Science, shows that this is not a simple task. The researchers used the bacterium Phocaeicola vulgatus, which is already found in the microbiome of humans, and modified it to break down oxalate and also to consume porphyran, a nutrient derived from seaweed. The porphyran was used as a way to control the population of Phocaeicola vulgatus by either adding more porphyran or reducing the amount, which should kill off the bacteria due to a lack of food.
The study was made up of three parts: one testing the modified bacteria on rats, one trial with healthy humans and one trial on people with enteric hyperoxaluria (EH). EH is a condition in which the body absorbs too much oxalate from food, leading to kidney stones and other kidney issues, if not treated.
Scientists have used DNA's self-assembling properties to engineer intricate moiré superlattices at the nanometer scale—structures that twist and layer like never before. With clever molecular “blueprints,” they’ve created customizable lattices featuring patterns such as honeycombs and squares, all with remarkable precision. These new architectures are more than just scientific art—they open doors to revolutionizing how we control light, sound, electrons, and even spin in next-gen materials.
Huntington’s disease is an autosomal dominant neurodegenerative disease caused by the repetition of cytosine, adenine, and guanine trinucleotides on the short arm of chromosome 4p16.3 within the Huntingtin gene. In this study, we aim to examine and map the existing evidence on the use of innovations in the rehabilitation of Huntington’s disease. A scoping review was conducted on innovative rehabilitative treatments performed on patients with Huntington’s disease. A search was performed on PubMed, Embase, Web of Science, and Cochrane databases to screen references of included studies and review articles for additional citations. Of an initial 1,117 articles, only 20 met the search criteria. These findings showed that available evidence is still limited and that studies generally had small sample sizes and a high risk of bias.
Repetitive reaching tasks in mature female rats triggered persistent pain-like and sickness behaviors linked to a surge in IL-6-driven inflammation throughout muscles, blood, and the brain. These findings reveal how overuse injuries provoke both physical and mood-related symptoms through a neuroimmune cascade.
In the study, the researchers also explored how the accelerated maturation of later-born inhibitory neurons is regulated. They identified specific genes involved in this process and uncovered how they control when and to what extent a cell reads and uses different parts of its genetic code. They found that the faster development of later-born inhibitory neurons turns out to be linked to changes in the developmental potential of the precursor cells that generate them—changes which are, in turn, triggered by a reorganization of the so-called ‘chromatin landscape.’
In simple terms, this means that cells adjust the accessibility of certain regions of DNA in the cell nucleus, making key instructions on how and when to develop more readable.
The human brain is made up of billions of nerve cells, or neurons, that communicate with each other in vast, interconnected networks. For the brain to function reliably, there needs to be a fine balance between two types of signals: Excitatory neurons that pass on information and increase activity, and inhibitory neurons that limit activity and prevent other neurons from becoming too active or firing out of control. This balance between excitation and inhibition is essential for a healthy, stable brain.
Inhibitory neurons are generated during brain development through the division of progenitor cells – immature cells not yet specialized but already on the path to becoming neurons. The new study uncovered a surprising feature of brain development based on findings in mice: During this essential process, cells born later in development mature much more quickly than those produced earlier.
“This faster growth helps later-born neurons catch up to those produced earlier, so that by the time all these neurons are incorporated into neural networks, they are at a similar stage of development,” said a research group leader. “This is important, as otherwise, earlier-born neurons—having had more time to form connections—could end up with far more synaptic links than those created later. Without this adjustment, the network could be thrown off balance, and individual cells would have too many or too few connections.”
Relevant data, including study design, geographic region, participant characteristics, and results, were extracted from the selected studies. The Newcastle-Ottawa Scale was used to assess the quality of studies and rate them as having low, moderate, or high quality.
The associations between allergic diseases and the risk of lung cancer were assessed using random and fixed effects models. Heterogeneity was evaluated using the I-squared statistic and chi-squared test. Sensitivity analyses indicated that no single study significantly influenced the overall effect size, supporting the robustness of the findings.
The search protocol yielded 226 studies. Following deduplication, title/abstract screening, and full-text reviews, 10 studies were selected for the meta-analysis. Of these, eight were case-control studies and two were cohort studies, cumulatively encompassing over 3.8 million participants.